|   | 
Details
   web
Records
Author Ma, T.
Title (up) An Estimate of the Pixel-Level Connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) Nighttime Lights and Land Features across China Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 5 Pages 723
Keywords Remote Sensing
Abstract Satellite-derived nighttime light images are increasingly used for various studies in relation to demographic, socioeconomic and urbanization dynamics because of the salient relationships between anthropogenic lighting signals at night and statistical variables at multiple scales. Owing to a higher spatial resolution and fewer over-glow and saturation effects, the new generation of nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB), which is located on board the Suomi National Polar-Orbiting Partnership (Suomi-NPP) satellite, is expected to facilitate the performance of nocturnal luminosity-based investigations of human activity in a spatially explicit manner. In spite of the importance of the spatial connection between the VIIRS DNB nighttime light radiance (NTL) and the land surface type at a fine scale, the crucial role of NTL-based investigations of human settlements is not well understood. In this study, we investigated the pixel-level relationship between the VIIRS DNB-derived NTL, a Landsat-derived land-use/land-cover dataset, and the map of point of interest (POI) density over China, especially with respect to the identification of artificial surfaces in urban land. Our estimates suggest that notable differences in the NTL between urban (man-made) surfaces and other types of land surfaces likely allow us to spatially identify most of the urban pixels with relatively high radiance values in VIIRS DNB images. Our results also suggest that current nighttime light data have a limited capability for detecting rural residential areas and explaining pixel-level variations in the POI density at a large scale. Moreover, the impact of non-man-made surfaces on the partitioned results appears inevitable because of the spatial heterogeneity of human settlements and the nature of remotely sensed nighttime light data. Using receiver operating characteristic (ROC) curve-based analysis, we obtained optimal thresholds of the nighttime light radiance, by equally weighting the sensitivity and specificity of the identification results, for extracting the nationwide distribution of lighted urban man-made pixels from the 2015 annual composite of VIIRS DNB data. Our findings can provide the basic knowledge needed for the further application of current nighttime light data to investigate spatiotemporal patterns in human settlements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1919
Permanent link to this record
 

 
Author Bailey, L.A.; Brigham, R.M.; Bohn, S.J.; Boyles, J.G.; Smit, B.
Title (up) An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection Type Journal Article
Year 2019 Publication Oecologia Abbreviated Journal Oecologia
Volume 190 Issue 2 Pages 367–374
Keywords Animals; Ecology; bats; moths; insects; mammals
Abstract Artificial lights may be altering interactions between bats and moth prey. According to the allotonic frequency hypothesis (AFH), eared moths are generally unavailable as prey for syntonic bats (i.e., bats that use echolocation frequencies between 20 and 50 kHz within the hearing range of eared moths) due to the moths' ability to detect syntonic bat echolocation. Syntonic bats therefore feed mainly on beetles, flies, true bugs, and non-eared moths. The AFH is expected to be violated around lights where eared moths are susceptible to exploitation by syntonic bats because moths' evasive strategies become less effective. The hypothesis has been tested to date almost exclusively in areas with permanent lighting, where the effects of lights on bat diets are confounded with other aspects of human habitat alteration. We undertook diet analysis in areas with short-term, localized artificial lighting to isolate the effects of artificial lighting and determine if syntonic and allotonic bats (i.e., bats that use echolocation frequencies outside the hearing range of eared moths) consumed more moths under conditions of artificial lights than in natural darkness. We found that syntonic bats increased their consumption of moth prey under experimentally lit conditions, likely owing to a reduction in the ability of eared moths to evade the bats. Eared moths may increase in diets of generalist syntonic bats foraging around artificial light sources, as opposed to allotonic species and syntonic species with a more specialized diet.
Address Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa. b.smit@ru.ac.za
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes PMID:31139944 Approved no
Call Number GFZ @ kyba @ Serial 2511
Permanent link to this record
 

 
Author Kronauer, R.E.; St Hilaire, M.A.; Rahman, S.A.; Czeisler, C.A.; Klerman, E.B.
Title (up) An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences Type Journal Article
Year 2019 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 34 Issue 5 Pages 497-514
Keywords Animals; Human Health
Abstract Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a “dead zone” of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.
Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts
Corporate Author Thesis
Publisher Sage Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:31368391 Approved no
Call Number GFZ @ kyba @ Serial 2600
Permanent link to this record
 

 
Author Bielli, A.; Alfaro-Shigueto, J.; Doherty, P.D.; Godley, B.J.; Ortiz, C.; Pasara, A.; Wang, J.H.; Mangel, J.C.
Title (up) An illuminating idea to reduce bycatch in the Peruvian small-scale gillnet fishery Type Journal Article
Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume in press Issue Pages 108277
Keywords Animals; oceans; bycatch; artificial illumination; bycatch reduction technologies
Abstract Found in the coastal waters of all continents, gillnets are the largest component of small-scale fisheries for many countries. Numerous studies show that these fisheries often have high bycatch rates of threatened marine species such as sea turtles, small cetaceans and seabirds, resulting in possible population declines of these non-target groups. However, few solutions to reduce gillnet bycatch have been developed. Recent bycatch reduction technologies (BRTs) use sensory cues to alert non-target species to the presence of fishing gear. In this study we deployed light emitting diodes (LEDs) – a visual cue – on the floatlines of paired gillnets (control vs illuminated net) during 864 fishing sets on small-scale vessels departing from three Peruvian ports between 2015 and 2018. Bycatch probability per set for sea turtles, cetaceans and seabirds as well as catch per unit effort (CPUE) of target species were analysed for illuminated and control nets using a generalised linear mixed-effects model (GLMM). For illuminated nets, bycatch probability per set was reduced by up to 74.4 % for sea turtles and 70.8 % for small cetaceans in comparison to non-illuminated, control nets. For seabirds, nominal BPUEs decreased by 84.0 % in the presence of LEDs. Target species CPUE was not negatively affected by the presence of LEDs. This study highlights the efficacy of net illumination as a multi-taxa BRT for small-scale gillnet fisheries in Peru. These results are promising given the global ubiquity of small-scale net fisheries, the relatively low cost of LEDs and the current lack of alternate solutions to bycatch.
Address Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK; bielli.alessandra(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2779
Permanent link to this record
 

 
Author McHardy, T.M.; Zhang, J.; Reid, J.S.; Miller, S.D.; Hyer, E.J.; Kuehn, R.E.
Title (up) An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band Type Journal Article
Year 2015 Publication Atmospheric Measurement Techniques Discussions Abbreviated Journal Atmos. Meas. Tech. Discuss.
Volume 8 Issue 5 Pages 5147-5178
Keywords Remote Sensing; Suomi NPP; VIIRS; DNB; VIIRS DNB; aerosol optical thickness; AERONET; lidar; SEAC4RS
Abstract Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method, dubbed the “variance method”, is developed for retrieving nighttime aerosol optical thickness (τ) values through the examination of the dispersion of radiance values above an artificial light source. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime τ using artificial light sources. Nighttime τ retrievals from the newly developed method are inter-compared with an interpolated value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column-integrated τ from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. Sensitivity studies are performed to examine the effects of lunar illumination on VIIRS τ retrievals made via the variance method, revealing that lunar contamination may have a smaller impact than previously thought, however the small sample size of this study limits the conclusiveness thus far. VIIRS τ retrievals yield a coefficient of determination (r2) of 0.60 and a root-mean-squared-error (RMSE) of 0.18 when compared against straddling daytime-averaged AERONET τ values. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.
Address Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA
Corporate Author Thesis
Publisher European Geosciences Union Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-8610 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1182
Permanent link to this record