|   | 
Details
   web
Records
Author Duan, X.; Hu, Q.; Zhao, P.; Wang, S.; Ai, M.
Title (up) An Approach of Identifying and Extracting Urban Commercial Areas Using the Nighttime Lights Satellite Imagery Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 6 Pages 1029
Keywords Remote Sensing
Abstract Urban commercial areas can reflect the spatial distribution of business activities. However, the scope of urban commercial areas cannot be easily detected by traditional methods because of difficulties in data collection. Considering the positive correlation between business scale and nighttime lighting, this paper proposes a method of urban commercial areas detection based on nighttime lights satellite imagery. First, an imagery preprocess model is proposed to correct imageries and improve efficiency of cluster analysis. Then, an exploratory spatial data analysis and hotspots clustering method is employed to detect commercial areas by geographic distribution metric with urban commercial hotspots. Furthermore, four imageries of Wuhan City and Shenyang City are selected as an example for urban commercial areas detection experiments. Finally, a comparison is made to find out the time and space factors that affect the detection results of the commercial areas. By comparing the results with the existing map data, we are convinced that the nighttime lights satellite imagery can effectively detect the urban commercial areas. The time of image acquisition and the vegetation coverage in the area are two important factors affecting the detection effect. Harsh weather conditions and high vegetation coverage are conducive to the effective implementation of this method. This approach can be integrated with traditional methods to form a fast commercial areas detection model, which can then play a role in large-scale socio-economic surveys and dynamic detection of commercial areas evolution. Hence, a conclusion can be reached that this study provides a new method for the perception of urban socio-economic activities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2870
Permanent link to this record
 

 
Author Jin, X.; Li, Y.; Zhang, J.; Zheng, J.; Liu, H.
Title (up) An Approach to Evaluating Light Pollution in Residential Zones: A Case Study of Beijing Type Journal Article
Year 2017 Publication Sustainability Abbreviated Journal Sustainability
Volume 9 Issue 4 Pages 652
Keywords Measurements; light pollution; monitoring approach; spatial distribution; residential zone; Beijing; China
Abstract Outdoor lighting is becoming increasingly widespread, and residents are suffering from serious light pollution as a result. Residents’ awareness of their rights to protection has gradually increased. However, due to the sometimes-inaccessible nature of residential vertical light incidence intensity data and the high cost of obtaining specific measurements, there is no appropriate hierarchic compensation for residents suffering from different degrees of light pollution. It is therefore important to measure light pollution levels and their damage at the neighborhood scale to provide residents with basic materials for proper protection and to create more politically-suitable solutions. This article presents a light pollution assessment method that is easy to perform, is low-cost and has a short data-processing cycle. This method can be used to monitor residential zone light pollution in other cities. We chose three open areas to test the spatial variation pattern of light intensity. The results are in accordance with spatial interpolation patterns and can be fit, with high precision, using the inverse distance weighted interpolation (IDW) method. This approach can also be used in three dimensions to quantitatively evaluate the distribution of light intensity. We use a mixed-use zone in Beijing known as The Place as our case study area. The vertical illumination at the windows of residential buildings ranges from 2 lux to 23 lux; the illumination in some areas is far higher than the value recommended by CIE. Such severe light pollution can seriously interfere with people’s daily lives and has a serious influence on their rest and health. The results of this survey will serve as an important database to assess whether the planning of night-time lighting is scientific, and it will help protect the rights of residents and establish distinguished compensation mechanisms for light pollution.
Address Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; Tel. +86-10-5880-7455
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1683
Permanent link to this record
 

 
Author Robertson, K.; Booth, D.T.; Limpus, C.J.
Title (up) An assessment of 'turtle-friendly' lights on the sea-finding behaviour of loggerhead turtle hatchlings (Caretta caretta) Type Journal Article
Year 2016 Publication Wildlife Research Abbreviated Journal Wildl. Res.
Volume 43 Issue 1 Pages 27
Keywords Animals
Abstract Context: It is well established that artificial light can disrupt the sea-finding ability of sea turtle hatchlings, and some manufactures are now marketing ‘turtle-friendly’ lights that are supposed to be minimally disruptive to this sea-finding behaviour. However, there have been no studies that have tested whether ‘turtle-friendly’ lights are benign to hatchling sea turtle sea-finding ability.

Aims: We tested two different types of ‘turtle-friendly’ lights (LED amber-light peak intensity 620 nm and LED red-light peak intensity 640 nm) to see whether they are disruptive to the sea-finding ability of eastern-coast Australian loggerhead turtle hatchlings.

Methods: Using standard circular-arena experiments, we assessed the directional preference of newly emerged loggerhead turtle hatchlings from the Woongarra Coast of Queensland, Australia, during different moon phases without artificial lighting and in the presence of ‘turtle-friendly’ lights.

Key results: Contrary to expectations, sea-finding ability of hatchlings was disrupted by the amber lights, particularly in the absence of a moon. The less intense red lights were less disruptive to hatchlings; however, misorientation and disorientation events still occurred when lights were within 4 m of hatchlings. The disruptive impact on sea-finding ability increased with the cumulative impact of multiple lights increasing light intensity.

Conclusions: The ‘turtle-friendly’ lights we used disrupted the sea-finding ability of eastern-coast Australian loggerhead turtle hatchlings, with the most pronounced disruption occurring under moonless conditions.

Implications: The use of amber and red LED lights adjacent to the nesting beaches of loggerhead sea turtles should be managed because this lighting has the potential to disrupt the sea-finding ability of sea turtle hatchlings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1035-3712 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1413
Permanent link to this record
 

 
Author Lu, L.; Weng, Q.; Xie, Y.; Guo, H.; Li, Q.
Title (up) An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery Type Journal Article
Year 2019 Publication Energy Abbreviated Journal Energy
Volume 189 Issue Pages 116351
Keywords Remote Sensing; Energy; electric power consumption; Night lights
Abstract Industrialization and urbanization have led to a remarkable increase of electric power consumption (EPC) during the past decades. To assess the changing patterns of EPC at the global scale, this study utilized nighttime lights in conjunction with population and built-up datasets to map EPC at 1 km resolution. Firstly, the inter-calibrated nighttime light data were enhanced using the V4.0 Gridded Population Density data and the Global Human Settlement Layer. Secondly, linear models were calibrated to relate EPC to the enhanced nighttime light data; these models were then employed to estimate per-pixel EPC in 2000 and 2013. Finally, the spatiotemporal patterns of EPC between the periods were analyzed at the country, continental, and global scales. The evaluation of the EPC estimation shows a reasonable accuracy at the provincial scale with R2 of 0.8429. Over 30% of the human settlements in Asia, Europe, and North America showed apparent EPC growth. At the national scale, moderate and high EPC growth was observed in 45% of the built-up areas in East Asia. The spatial clustering patterns revealed that EPC decreased in Russia and the Western Europe. This study provides fresh insight into the spatial pattern and variations of global electric power consumption.
Address Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, PR China; qweng(at)indstate.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2701
Permanent link to this record
 

 
Author Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A.
Title (up) An asymptotic formula for skyglow modelling over a large territory Type Journal Article
Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 485 Issue 2 Pages 2214-2224
Keywords Skyglow
Abstract An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2258
Permanent link to this record