|   | 
Details
   web
Records
Author Miller, M.W.
Title (up) Apparent Effects of Light Pollution on Singing Behavior of American Robins Type Journal Article
Year 2006 Publication The Condor Abbreviated Journal Condor
Volume 108 Issue 1 Pages 130
Keywords American Robin; birds; light pollution; morning chorus; dawn chorus; song; Turdus migratorius; animals; communication
Abstract Astronomers consider light pollution to be a growing problem, however few studies have addressed potential effects of light pollution on wildlife. Sunlight is believed to initiate song in many bird species. If light initiates song, then light pollution may be influencing avian song behavior at a population level. This hypothesis predicts that birds breeding in areas with large amounts of artificial light will begin singing earlier in the day than birds in areas with little artificial light. Birds in highly illuminated areas might begin singing earlier than did birds in those same areas in previous years when artificial light levels were known to be, or were presumably, lower. Also, birds should begin singing earlier within a site on brightly lit nights. In 2002 and 2003 I documented initiation of morning song by breeding American Robins (Turdus migratorius) in areas with differing intensity of artificial nocturnal light. I compared my observations among sites and against historical studies. Robin populations in areas with large amounts of artificial light frequently began their morning chorus during true night. Chorus initiation time, relative to civil twilight, was positively correlated with amount of artificial light present during true night. Robin choruses in areas with little, or presumably little, artificial light have almost never begun during true night, instead appearing to track the onset of civil twilight. Proliferation of artificial nocturnal light may be strongly affecting singing behavior of American Robins at a population level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-5422 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 39
Permanent link to this record
 

 
Author Gibbons, R.; Terry, T.; Bhagavathula, R.; Meyer, J.; Lewis, A.
Title (up) Applicability of mesopic factors to the driving task Type Journal Article
Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 48 Issue 1 Pages 70-82
Keywords Lighting; Public Safety; Planning
Abstract With the advent of light-emitting diode technology being applied to roadway lighting, the spectral power distribution of the light source is becoming much more important. In this experiment, the detection of pedestrians at five adaptation levels under three light sources, high pressure sodium and light emitting diodes of two colour temperatures was measured in realistic roadway scenarios. The results show that while the light source type was not significant, an increase in adaptation luminance increased the detection distance. As the offset of the object to the roadway increased, some spectral effects became more significant; however, this effect was not consistent across all angles of eccentricity. The conclusions from this work indicate that mesopic factors may not be applicable on high-speed roads.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1382
Permanent link to this record
 

 
Author Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y.
Title (up) Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review Type Journal Article
Year 2014 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 6 Issue 8 Pages 6844-6866
Keywords Remote Sensing
Abstract Since the release of the digital archives of Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS) nighttime light data in 1992, a variety of datasets based on this database have been produced and applied to monitor and analyze human activities and natural phenomena. However, differences among these datasets and how they have been applied may potentially confuse researchers working with these data. In this paper, we review the ways in which data from DMSP/OLS nighttime light images have been applied over the past two decades, focusing on differences in data processing, research trends, and the methods used among the different application areas. Five main datasets extracted from this database have led to many studies in various research areas over the last 20 years, and each dataset has its own strengths and limitations. The number of publications based on this database and the diversity of authors and institutions involved have shown promising growth. In addition, researchers have accumulated vast experience retrieving data on the spatial and temporal dynamics of settlement, demographics, and socioeconomic parameters, which are “hotspot” applications in this field. Researchers continue to develop novel ways to extract more information from the DMSP/OLS database and apply the data to interdisciplinary research topics. We believe that DMSP/OLS nighttime light data will play an important role in monitoring and analyzing human activities and natural phenomena from space in the future, particularly over the long term. A transparent platform that encourages data sharing, communication, and discussion of extraction methods and synthesis activities will benefit researchers as well as public and political stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2482
Permanent link to this record
 

 
Author Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G.
Title (up) Application of power line communication technology in street lighting control Type Journal Article
Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal Int. J. DNE
Volume 13 Issue 2 Pages 176-186
Keywords Lighting
Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-7437 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2091
Permanent link to this record
 

 
Author Son, K.-H.; Jeon, Y.-M.; Oh, M.-M.
Title (up) Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
Year 2016 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 57 Issue 6 Pages 560-572
Keywords Plants
Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1615
Permanent link to this record