toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schroer, S.; Hölker, F. url  doi
isbn  openurl
  Title Impact of Lighting on Flora and Fauna Type (up) Book Chapter
  Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages 1-33  
  Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review  
  Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-00295-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1470  
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F. url  doi
openurl 
  Title Light Pollution Reduction Type (up) Book Chapter
  Year 2014 Publication Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords ligting technology; awareness; skyglow, lighting design  
  Abstract Artificial light at night is an irreplaceable technology for our society and its activities at nighttime. But this indispensable tool has detrimental side effects, which have only come to light in the past 10–20 years. This chapter reviews ways to implement technology in order to lower the impact of artificial light at night on nature and humans. Further, it provides guidelines for environmental protection and scientific approaches to reduce the increase in light pollution and discusses the urgent need for further research. Measures to prevent obtrusive light and unintentional trespass into homes and natural habitats are

mostly simple solutions like shielding luminaires and predominantly require awareness. Shades are another effective tool to reduce trespass from interior lights. Especially in greenhouses, the use of shades significantly reduces the contribution to skyglow. Artificial light should be switched off whenever it is not needed. Smart, flexible lighting systems can help to use artificial light with precision. The choice of the appropriate illumination has to be balanced by the needs for optimal visibility, human well-being, environmental conservation and protection of the night sky. For visibility, conditions comparable to bright moonlit nights (0.3 lx) are sufficient. Low-level streetlights that produce only 1–3 lx at the surface meet the requirement of facial cognition. Although this light level might be too low for road safety, a consideration of maximum illumination levels in street lighting is recommended. The spectral power distribution of illuminants can impact several environmental parameters. For example, illuminants emitting short wavelengths can sup- press melatonin in higher vertebrates (including humans), are attracting many insect species, and contribute in skyglow above average. Recent findings in different measures for energy efficiency of illuminants at scotopic or mesopic vision conditions compared to photopic conditions indicate that the assessment of lighting products needs fundamental revision. Further research is crucially needed to create refuges for light-sensitive species at night, to measure the impact of artificial light on nature, and also to monitor the improvements of light pollution-reducing measures. Decrees in various regions have helped to lower the impact of artificial light at night significantly. Measures to reduce the impact of artificial light at night need to be carefully balanced with the surrounding environment. Thoughtful guidelines are crucial to reducing the rapid increase in sky brightness worldwide. These guidelines need to be made accessible for decision makers especially in areas which require new light installations.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Karlicek, Robert Sun, Ching-Chern Zissis, Georgis Ma, Ruiqing  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1569  
Permanent link to this record
 

 
Author Lessard, B. url  openurl
  Title Shot in the Dark: Nocturnal Philosophy and Night Photography Type (up) Book Chapter
  Year 2018 Publication Critical Distance in Documentary Media Abbreviated Journal  
  Volume Issue Pages 45-67  
  Keywords Society; Art  
  Abstract This chapter examines the neglected practice of night photography, and how it critically addresses the environmental, sociohistorical, and urban issues in recent series by Christina Seely, Bruno Lessard, Michel Huneault, and Jeanine Michna-Bales. Drawing on Jacques Derrida, Emmanuel Levinas, and the emerging field of night studies to create a nocturnal philosophy—a dark photology—with which to frame the multifaceted issues at the heart of the series, the author examines the value that these photographic artists place upon night to document light pollution around the world, ongoing urban transformations in China, an environmental catastrophe and its aftermath in Québec, and the landscape of the Underground Railroad in the United States. These four series demonstrate how night photography offers a unique critical perspective on some of the most pressing problems of our age, and how these artists distance themselves from the predominantly diurnal register of documentary media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2319  
Permanent link to this record
 

 
Author Bedrosian, T.A. (ed) pdf  url
openurl 
  Title Circadian Disruption by Light at Night: Implications for Mood Type (up) Book Whole
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords circadian disruption; sleep; light at night; melanopsin; mood; mental health; Mood Disorders; epigenetics; red light  
  Abstract Life on Earth has adapted to a consistent 24-h solar cycle. Circadian rhythms in physiology and behavior remain synchronized to the environment using light as the most potent entraining cue. During the past century, however, the widespread adoption of electric light has led to `round-the-clock’ societies. Instead of aligning with the environment, individuals follow artificial and often erratic light cycles created by social and work schedules. In particular, exposure to artificial light at night (LAN), termed “light pollution”, has become pervasive over the past 100 years. Virtually every individual living in the U.S. and Europe experiences this aberrant light exposure, and moreover about 20% of the population performs shift work. LAN may disrupt physiological timekeeping, leading to dysregulation of internal processes and misalignment between behavior and the environment. Recent evidence suggests that individuals exposed to excessive LAN, such as night shift workers, have increased risk for depressive disorders, but the biological mechanism remains unspecified. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) project light information to (1) the suprachiasmatic nucleus (SCN) in the hypothalamus, regulating circadian rhythms, and (2) to limbic regions, putatively regulating mood. Thus, LAN has the potential to affect both circadian timekeeping and mood. In this dissertation, I present evidence from rodent studies supporting the novel hypothesis that night-time exposure to light disrupts circadian organization and contributes to depressed mood. First, I consider the physiological and behavioral consequences associated with unnatural exposure to LAN. The effects of LAN on circadian output are considered in terms of locomotor activity, the diurnal cortisol rhythm, and diurnal clock protein expression in the brain in Chapter 2. The influence of LAN on behavior and brain plasticity is discussed, with particular focus on depressive-like behavior (Chapter 3) and effects of SSRI treatment (Chapter 4). Effects of LAN on structural plasticity and gene expression in the brain are described, with emphasis on potential correlates of the depressive-like behavior observed under LAN in Chapter 5. Given the prevalence of LAN exposure and its importance, strategies for reversing the effects are offered. Specifically, eliminating LAN quickly reverses behavioral and physiological effects of exposure as described in Chapter 5. In Chapter 6 I report that administration of a pharmacological cytokine inhibitor prevents depressive-like behaviors in LAN, implicating brain inflammation in the behavioral effect. Finally, I demonstrate in Chapter 7 that exposure to red wavelength LAN reduces the effects on brain and behavior, suggesting that LAN acts through specific retinal pathways involving melanopsin. Taken together, these studies demonstrate the consequences of LAN, but also outline potential avenues for prevention or intervention.  
  Address Department of Neuroscience and The Institute for Behavioral Medicine Research The Ohio State University  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Bedrosian, T.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 323  
Permanent link to this record
 

 
Author Fuller, G. (ed) pdf  openurl
  Title The Night Shift: Lighting and Nocturnal Strepsirrhine Care in Zoos Type (up) Book Whole
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords zoos; light at night; circadian disruption; strepsirrhines; primates; lorises; pottos; lighting design  
  Abstract Over billions of years of evolution, light from the sun, moon, and stars has provided

organisms with reliable information about the passage of time. Photic cues entrain

the circadian system, allowing animals to perform behaviors critical for survival and

reproduction at optimal times. Modern artificial lighting has drastically altered

environmental light cues. Evidence is accumulating that exposure to light at night

(particularly blue wavelengths) from computer screens, urban light pollution, or as

an occupational hazard of night-shift work has major implications for human health.

Nocturnal animals are the shift workers of zoos; they are generally housed on

reversed light cycles so that daytime visitors can observe their active behaviors. As a

result, they are exposed to artificial light throughout their subjective night. The goal

of this investigation was to examine critically the care of nocturnal strepsirrhine

primates in North American zoos, focusing on lorises (Loris and Nycticebus spp.) and pottos (Perodicticus potto). The general hypothesis was that exhibit lighting design affects activity patterns and circadian physiology in nocturnal strepsirrhines. The

first specific aim was to assess the status of these populations. A multi-institutional husbandry survey revealed little consensus among zoos in lighting design, with both red and blue light commonly used for nocturnal illumination. A review of medical records also revealed high rates of neonate mortality. The second aim was to

develop methods for measuring the effects of exhibit lighting on behavior and

health. The use of actigraphy for automated activity monitoring was explored.

Methods were also developed for measuring salivary melatonin and cortisol as

indicators of circadian disruption. Finally, a multi-institutional study was conducted

comparing behavioral and endocrine responses to red and blue dark phase lighting.

These results showed greater activity levels in strepsirrhines housed under red light than blue. Salivary melatonin concentrations in pottos suggested that blue light

suppressed nocturnal melatonin production at higher intensities, but evidence for

circadian disruption was equivocal. These results add to the growing body of

evidence on the detrimental effects of blue light at night and are a step towards

empirical recommendations for nocturnal lighting design in zoos.
 
  Address Department of Biology, Case Western Reserve University  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Fuller, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: