|   | 
Details
   web
Records
Author Yue, Y.; Tian, L.; Yue, Q.; Wang, Z.
Title Spatiotemporal Variations in Energy Consumption and Their Influencing Factors in China Based on the Integration of the DMSP-OLS and NPP-VIIRS Nighttime Light Datasets Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 7 Pages 1151
Keywords Remote Sensing
Abstract With the speedy growth of economic development, the imbalance of energy supply and demand pose a critical challenge for the energy security of our country. Meanwhile, the increasing and excessive energy consumption lead to the greenhouse effect and atmospheric pollution, greatly threatening the survival and development of human beings. This study integrated two nighttime light remote sensing datasets, namely Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) data, to extend the temporal coverage of the study. Then, the distributions of China’s energy consumption from 1995 to 2016 at a 1-km resolution were estimated using different models and the spatiotemporal variations of energy consumption were explored on the basis of the best estimated results. Next, the factors influencing China’s energy intensity on the provincial level were investigated based on the spatial econometric model. The results show that: (1) The integrated nighttime light datasets can be successfully applied to estimate the dynamic changes of energy consumption. Moreover, the panel data model established in our research performed better than the quadratic polynomial model. (2) During the observation period, the energy consumption in China significantly increased, especially in the Yangtze River Delta, the Pearl River Delta, the Beijing–Tianjin–Hebei region, eastern coastal cities, and provincial capitals. (3) Different from the random spatial distribution pattern of energy consumption on the provincial level, the spatial distribution of energy consumption on the prefectural level has significant clusters, and its spatial agglomeration was strengthened year by year during the research period. (4) The spatial Durbin model (SDM) with a spatial fixed effect has been proved to be more suitable to explore the impact mechanism of China’s energy consumption. Among the four socio-economic factors, industrial structure has the greatest impact on the provincial energy intensity in China. Moreover, the changes in industrial structure and foreign direct investment (FDI) can not only influence the local energy intensity but also affect the energy intensity of the neighboring provinces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2922
Permanent link to this record
 

 
Author Ma, J.; Guo, J.; Ahmad, S.; Li, Z.; Hong, J.
Title Constructing a New Inter-Calibration Method for DMSP-OLS and NPP-VIIRS Nighttime Light Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 6 Pages 937
Keywords Remote Sensing
Abstract The anthropogenic nighttime light (NTL) data that are acquired by satellites can characterize the intensity of human activities on the ground. It has been widely used in urban development assessment, socioeconomic estimate, and other applications. However, currently, the two main sensors, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), provide inconsistent data. Hence, the application of NTL for long-term analysis is hampered. This study constructed a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light to solve this problem. First, NTL data were processed to obtain vicarious site across China. By comparing different candidate models, it is discovered the Biphasic Dose Response (BiDoseResp) model, which is a weighted combination of sigmoid functions, can best perform the regression between DMSP-OLS and logarithmically transformed NPP-VIIRS. The coefficient of determination of BiDoseResp model reaches 0.967. It’s residual sum of squares is 6.136×105 , which is less than 6.199×105 of Logistic function. After obtaining the BiDoseResp-calibrated VIIRS (BDRVIIRS), we smoothed it by a filter with optimal parameters to maximize the consistency. The result shows that the consistency of NTL data is greatly enhanced after calibration. In 2013, the correlation coefficient between DMSP-OLS and original NPP-VIIRS data in the China region is only 0.621, while that reaches to 0.949 after calibration. Finally, a consistent NTL dataset of China from 1992 to 2018 was produced. When compared with the existing methods, our method is applicable to the full dynamic range of DMSP-OLS. Besides, it is more suitable for country or larger scale areas. It is expected that this method can greatly facilitate the development of research that is based on the historical NTL archive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2860
Permanent link to this record
 

 
Author Danesh Yazdi, M.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J.
Title Predicting Fine Particulate Matter (PM2.5) in the Greater London Area: An Ensemble Approach using Machine Learning Methods Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 6 Pages 914
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2856
Permanent link to this record
 

 
Author Duan, X.; Hu, Q.; Zhao, P.; Wang, S.; Ai, M.
Title An Approach of Identifying and Extracting Urban Commercial Areas Using the Nighttime Lights Satellite Imagery Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 6 Pages 1029
Keywords Remote Sensing
Abstract Urban commercial areas can reflect the spatial distribution of business activities. However, the scope of urban commercial areas cannot be easily detected by traditional methods because of difficulties in data collection. Considering the positive correlation between business scale and nighttime lighting, this paper proposes a method of urban commercial areas detection based on nighttime lights satellite imagery. First, an imagery preprocess model is proposed to correct imageries and improve efficiency of cluster analysis. Then, an exploratory spatial data analysis and hotspots clustering method is employed to detect commercial areas by geographic distribution metric with urban commercial hotspots. Furthermore, four imageries of Wuhan City and Shenyang City are selected as an example for urban commercial areas detection experiments. Finally, a comparison is made to find out the time and space factors that affect the detection results of the commercial areas. By comparing the results with the existing map data, we are convinced that the nighttime lights satellite imagery can effectively detect the urban commercial areas. The time of image acquisition and the vegetation coverage in the area are two important factors affecting the detection effect. Harsh weather conditions and high vegetation coverage are conducive to the effective implementation of this method. This approach can be integrated with traditional methods to form a fast commercial areas detection model, which can then play a role in large-scale socio-economic surveys and dynamic detection of commercial areas evolution. Hence, a conclusion can be reached that this study provides a new method for the perception of urban socio-economic activities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2870
Permanent link to this record
 

 
Author Zheng, H.; Gui, Z.; Wu, H.; Song, A.
Title Developing Non-Negative Spatial Autoregressive Models for Better Exploring Relation Between Nighttime Light Images and Land Use Types Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 5 Pages 798
Keywords Remote Sensing
Abstract Exploring the relationship between nighttime light and land use is of great significance to understanding human nighttime activities and studying socioeconomic phenomena. Models have been studied to explain the relationships, but the existing studies seldom consider the spatial autocorrelation of night light data, which leads to large regression residuals and an inaccurate regression correlation between night light and land use. In this paper, two non-negative spatial autoregressive models are proposed for the spatial lag model and spatial error model, respectively, which use a spatial adjacency matrix to calculate the spatial autocorrelation effect of light in adjacent pixels on the central pixel. The application scenarios of the two models were analyzed, and the contribution of various land use types to nighttime light in different study areas are further discussed. Experiments in Berlin, Massachusetts and Shenzhen showed that the proposed methods have better correlations with the reference data compared with the non-negative least-squares method, better reflecting the luminous situation of different land use types at night. Furthermore, the proposed model and the obtained relationship between nighttime light and land use types can be utilized for other applications of nighttime light images in the population, GDP and carbon emissions for better exploring the relationship between nighttime remote sensing brightness and socioeconomic activities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2848
Permanent link to this record