toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Wang, J.; Qu, S.; Peng, K.; Feng, Y. url  doi
openurl 
  Title Quantifying Urban Sprawl and Its Driving Forces in China Type Journal Article
  Year 2019 Publication Discrete Dynamics in Nature and Society Abbreviated Journal Discrete Dynamics in Nature and Society  
  Volume 2019 Issue Pages 1-14  
  Keywords Remote Sensing  
  Abstract Against the background that urbanization has proceeded quickly in China over the last two decades, a limited number of empirical researches have been performed for analyzing the measurement and driving forces of urban sprawl at the national and regional level. The article aims at using remote sensing derived data and administrative data (for statistical purposes) to investigate the development status of urban sprawl together with its driving forces. Compared with existing studies, NPP/VIIRS data and LandScan data were used here to examine urban sprawl from two different perspectives: urban population sprawl and urban land sprawl. Furthermore, we used population density as a counter-indicator of urban sprawl, and the regression results also prove the superiority of the urban sprawl designed by us. The main results show that the intensity of urban population sprawl and urban land sprawl has been enhanced. However, the upside-down between the inflow of migrants and the supply of urban construction land among different regions aggravates the intensity of urban sprawl. According to the regression analyses, the driving mechanism of urban sprawl in the eastern region relying on land finance and financial development has lost momentum for the limitation of urban construction land supply. The continuous outflow of population and loosely land supply have accelerated the intensity of urban land sprawl in the central and western regions. The findings of the article may help people to realize that urban sprawl has become a staggering reality among Chinese cities; thereby urban planners as well as policymakers should make some actions to hinder the urban sprawl.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1026-0226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2379  
Permanent link to this record
 

 
Author Priyatikanto, R.; Mayangsari, L.; Prihandoko, R.A.; Admiranto, A.G. url  doi
openurl 
  Title Classification of Continuous Sky Brightness Data Using Random Forest Type Journal Article
  Year 2020 Publication Advances in Astronomy Abbreviated Journal Advances in Astronomy  
  Volume 2020 Issue Pages 1-11  
  Keywords Skyglow  
  Abstract Sky brightness measuring and monitoring are required to mitigate the negative effect of light pollution as a byproduct of modern civilization. Good handling of a pile of sky brightness data includes evaluation and classification of the data according to its quality and characteristics such that further analysis and inference can be conducted properly. This study aims to develop a classification model based on Random Forest algorithm and to evaluate its performance. Using sky brightness data from 1250 nights with minute temporal resolution acquired at eight different stations in Indonesia, datasets consisting of 15 features were created to train and test the model. Those features were extracted from the observation time, the global statistics of nightly sky brightness, or the light curve characteristics. Among those features, 10 are considered to be the most important for the classification task. The model was trained to classify the data into six classes (1: peculiar data, 2: overcast, 3: cloudy, 4: clear, 5: moonlit-cloudy, and 6: moonlit-clear) and then tested to achieve high accuracy (92%) and scores (F-score = 84% and G-mean = 84%). Some misclassifications exist, but the classification results are considerably good as indicated by posterior distributions of the sky brightness as a function of classes. Data classified as class-4 have sharp distribution with typical full width at half maximum of 1.5 mag/arcsec2, while distributions of class-2 and -3 are left skewed with the latter having lighter tail. Due to the moonlight, distributions of class-5 and -6 data are more smeared or have larger spread. These results demonstrate that the established classification model is reasonably good and consistent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7969 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2878  
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W. url  doi
openurl 
  Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type Journal Article
  Year 2018 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 5 Issue 493 Pages  
  Keywords Instrumentation; Animals; Skyglow  
  Abstract Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2315  
Permanent link to this record
 

 
Author Alessandro Manfrin, Gabriel Singer, Stefano Larsen, Nadine Weiss, Roy H. A. van Grunsven, Nina-Sophie Weiss, Stefanie Wohlfahrt, Michael T. Monaghan and Franz Hölker url  doi
openurl 
  Title Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem Type Journal Article
  Year 2017 Publication Frontiers in Environmental Science Abbreviated Journal  
  Volume 5 Issue 61 Pages  
  Keywords Animals; Ecology  
  Abstract Artificial light at night (ALAN) is a widespread alteration of the natural environment that can affect the functioning of ecosystems. ALAN can change the movement patterns of freshwater animals that move into the adjacent riparian and terrestrial ecosystems, but the implications for local riparian consumers that rely on these subsidies are still unexplored. We conducted a two-year field experiment to quantify changes of freshwater-terrestrial linkages by installing streetlights in a previously light-native riparian area adjacent to an agricultural drainage ditch. We compared the abundance and community composition of emerging aquatic insects, flying insects, and ground-dwelling arthropods with an unlit control site. Comparisons were made within and between years using generalized least squares and a BACI design (Before-After Control-Impact). Aquatic insect emergence, the proportion of flying insects that were aquatic in origin, and the total abundance of flying insects all increased in the ALAN-illuminated area. The abundance of several night-active ground-dwelling predators (Pachygnatha clercki, Trochosa sp., Opiliones) increased under ALAN and their activity was extended into the day. Conversely, the abundance of nocturnal ground beetles (Carabidae) decreased under ALAN. The changes in composition of riparian predator and scavenger communities suggest that the increase in aquatic-to-terrestrial subsidy flux may cascade through the riparian food web. The work is among the first studies to experimentally manipulate ALAN using a large-scale field experiment, and provides evidence that ALAN can affect processes that link adjacent ecosystems. Given the large number of streetlights that are installed along shorelines of freshwater bodies throughout the globe, the effects could be widespread and represent an underestimated source of impairment for both aquatic and riparian systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1746  
Permanent link to this record
 

 
Author Opperhuizen, A.-L.; Foppen, E.; Jonker, M.; Wackers, P.; van Faassen, M.; van Weeghel, M.; van Kerkhof, L.; Fliers, E.; Kalsbeek, A. url  doi
openurl 
  Title Effects of Light-at-Night on the Rat Liver – A Role for the Autonomic Nervous System Type Journal Article
  Year 2019 Publication Frontiers in Neuroscience Abbreviated Journal Front. Neurosci.  
  Volume 13 Issue Pages  
  Keywords Animals  
  Abstract Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-453X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2539  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: