toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Elvidge, C. D.; Baugh, K. E.; Dietz, J. B.; Bland, T.; Sutton, P. C.; Kroehl, H. W. url  doi
openurl 
  Title Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Type Journal Article
  Year 1999 Publication Remote Sensing of Environment Abbreviated Journal  
  Volume 68 Issue 1 Pages 77-88  
  Keywords Remote Sensing; DMSP; DMSP-OLS; satellite; night lights; light pollution  
  Abstract Nocturnal lighting is a primary method for enabling human activity. Outdoor lighting is used extensively worldwide in residential, commercial, industrial, public facilities, and roadways. A radiance calibrated nighttime lights image of the United States has been assembled from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). The satellite observation of the location and intensity of nocturnal lighting provide a unique view of humanities presence and can be used as a spatial indicator for other variables that are more difficult to observe at a global scale. Examples include the modeling of population density and energy related greenhouse gas emissions.  
  Address NOAA National Geophysical Data Center, Boulder, CO USA  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 930  
Permanent link to this record
 

 
Author Neale, W., Marr, J., McKelvey, N., & Kuzel, M. url  doi
openurl 
  Title Nighttime Visibility in Varying Moonlight Conditions Type Journal Article
  Year 2019 Publication SAE Technical Paper 2019-01-1005 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Public Safety; Moonlight; Vision  
  Abstract When the visibility of an object or person in the roadway from a driver’s perspective is an issue, the potential effect of moonlight is sometimes questioned. To assess this potential effect, methods typically used to quantify visibility were performed during conditions with no moon and with a full moon. In the full moon condition, measurements were collected from initial moon rise until the moon reached peak azimuth. Baseline ambient light measurements of illumination at the test surface were measured in both no moon and full moon scenarios. Additionally, a vehicle with activated low beam headlamps was positioned in the testing area and the change in illumination at two locations forward of the vehicle was recorded at thirty-minute intervals as the moon rose to the highest position in the sky. Also, two separate luminance readings were recorded during the test intervals, one location 75 feet in front and to the left of the vehicle, and another 150 feet forward of the vehicle. These luminance readings yielding the change in reflected light attributable to the moon. In addition to the quantitative measurement of light contributed by the moon, documentation to the change in visibility of objects and pedestrians located on the roadway were documented through photographs. Calibrated nighttime photographs were taken from the driver’s perspective inside the vehicle with low beam headlamps activated. The photographs were analyzed after testing to determine how the light intensity of the pixels in the photographs changed at each thirty-minute interval due to the additional light contribution from the moon. The results of this testing indicate that the quantifiable change in visibility distance attributable to added moonlight was negligible, and in real-world driving situations, the effect of additional illumination from a full moon would be unlikely to affect the detection of an object or pedestrian in or near the travel lane of the roadway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2355  
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Marimuthu C.; Kirubakaran V. url  openurl
  Title Carbon and Energy Pay Back Period for the Solar Street Light using Life Cycle Assessment Type Journal Article
  Year 2015 Publication International Journal of ChemTech Research Abbreviated Journal  
  Volume 8 Issue 3 Pages 1125-1130  
  Keywords Lighting; Economics  
  Abstract Electronic street lights are big consumers of energy, costing millions to cities and municipalities around the world. Solar Street light is one of the method to reduce the power consumption by generate the energy using the solar Photovoltaic panel. This system includes the power generators (panel), storage (batteries) and management (controller) as well as the light, poles and weather proof housing for batteries. Life cycle inventories are based on manufacturers data combined with additional calculation and assumption. The Life Cycle Assessment (LCA) methodology used in this research was based on the ISO 14040 and 14044 series. In this paper, the LCA method is used to investigate the environmental impacts of two types of street light technology, conventional street light and solar street light. The cradle to grave analysis for conventional and solar street light includes raw material extraction, production, uses and end of life scenario. The detail investigation has made for the existing solar street light present at Gandhigram Rural University, Dindigul Dist, Tamil Nadu. The specification of the solar street light is 80W capacity, 1.2 m2 area of panel and 135Ah – 12V battery. The total no of poles is 70. For the above system carbon intensity, Energy Pay Back Period and Carbon Pay Back Period have been calculated and compared with conventional street light. The result from the study will support local decision makers when seeking a balance between the environmental, financial and social requirements of public lighting services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0974-4290 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number UP @ altintas1 @ Serial 3147  
Permanent link to this record
 

 
Author Clark, B.A.J. url  openurl
  Title Outdoor Lighting and Crime, Part 2: Coupled Growth. Type Report
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Security; Society; Safety; crime; public safety  
  Abstract Experimental evidence about the relationship between outdoor lighting and crime was examined in Part 1 of this work. Although the presence of light tends to allay the fear of crime at night, the balance of evidence from relatively short-term field studies is that increased lighting is ineffective for preventing or deterring actual crime. In this second part, available evidence indicates that darkness inhibits crime, and that crime is more encouraged than deterred by outdoor lighting. A new hypothesis is developed accordingly. Additional quantitative evidence supports the hypothesis. Excessive outdoor lighting appears to facilitate some of the social factors that lead to crime. The proliferation of artificial outdoor lighting has been fostered with little regard for the environmental consequences of wasteful practice. Widely observed exponential increases in artificial skyglow indicate that the growth of outdoor lighting is unsustainable. The natural spectacle of the night sky has already been obliterated for much of the population of the developed world. Copious artificial light has transformed civilisation, but increasing knowledge of its adverse environmental, biological and cultural effects now justifies large overall reductions in outdoor ambient light at night as well as in its waste component. ‘Good’ lighting has to be redefined. Moderation of outdoor ambient light levels may reduce crime in due course, as well as limiting the adverse environmental effects. Lighting controls might provide a means of limiting urbanisation and urban sprawl. National crime prevention policies, laws, lighting standards, architectural use of light and urban planning practice appear in need of fundamental changes.  
  Address Astronomical Society of Victoria, Inc., Australia  
  Corporate Author Thesis  
  Publisher Self-published Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @; IDA @ john @ Serial 1017  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: