toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Simoneau, A.; Aubé, M.; Bertolo, A. url  doi
openurl 
  Title Multispectral analysis of the night sky brightness and its origin for the Asiago Observatory, Italy Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume (down) 491 Issue 3 Pages 4398-4405  
  Keywords Skyglow; light pollution; numerical methods; Site testing; Italy; Observatories  
  Abstract Night protection has been a major concern for astronomers since the electrification of cities and is beginning to be recognized as a major environmental problem. In recent years, regulations have been put in place through the establishment of Dark Sky Reserves that impose stringent constraints on lighting practices for cities in protected areas. Astronomers from the Asiago Observatory, located in the Veneto region of Italy, would like to create an area of this nature around their facilities to improve and protect the quality of their astronomical observations. This study assesses the current state of the sky in the region through numerical modelling using the latest improvements to the ILLUMINA model and aims to identify the main contributing sources of artificial light. The explicit calculation of the contribution of private residential lighting helps to discern the origin of the light. We also present a new approach for extracting an estimate of the distribution of lamp technology in a region from images taken from the International Space Station.  
  Address Bishop’s University, 2600 rue College, Sherbrooke, Québec J1M 1Z7, Canada; alsimoneau(at)gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2790  
Permanent link to this record
 

 
Author Kocifaj, M.; Kundracik, F.; Bilý, O. url  doi
openurl 
  Title Emission spectra of light-pollution sources determined from the light-scattering spectrometry of the night sky Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 491 Issue 4 Pages 5586-5594  
  Keywords Skyglow; Remote Sensing  
  Abstract The emission spectrum of a light-pollution source is a determining factor for modelling artificial light at night. The spectral composition of skyglow is normally derived from the initial spectra of all artificial light sources contributing to the diffuse illumination of an observation point. However, light scattering in the ambient atmosphere imposes a wavelength-specific distortion on the optical signals captured by the measuring device. The nature of the emission, the spectra and the light-scattering phenomena not only control the spectral properties of the ground-reaching radiation, but also provide a unique tool for remote diagnosis and even identification of the emission spectra of the light-polluting sources. This is because the information contained in the night-sky brightness is preferably measured in directions towards a glowing dome of light over the artificial source of light. We have developed a new method for obtaining the emission spectra using remote terrestrial sensing of the bright patches of sky associated with a source. Field experiments conducted in Vienna and Bratislava have been used to validate the theoretical model and the retrieval method. These experiments demonstrate that the numerical inversion is successful even if the signal-to-noise ratio is small. The method for decoding the emission spectra by the light-scattering spectrometry of a night sky is a unique approach that enables for (i) a systematic characterization of the light-pollution sources over a specific territory, and (ii) a significant improvement in the numerical prediction of skyglow changes that we can expect at observatories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2793  
Permanent link to this record
 

 
Author Kocifaj, M.; Bará, S. url  doi
openurl 
  Title Two-index model for characterizing site-specific night sky brightness patterns Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 490 Issue 2 Pages 1953-1960  
  Keywords Skyglow  
  Abstract The determination of the all-sky radiance distribution produced by artificial light sources is a computationally demanding task that generally requires intensive calculations. In this paper, we develop an analytical formulation that provides the all-sky radiance distribution produced by an artificial light source as an explicit and analytical function of the observation direction, depending on two single parameters that characterize the overall effects of the atmosphere. One of these parameters is related to the effective attenuation of the light beams, whereas the other accounts for the overall asymmetry of the combined scattering processes in molecules and aerosols. Using this formulation, a wide range of all-sky radiance distributions can be efficiently and accurately calculated in a short time. This substantial reduction in the number of required parameters, in comparison with other approaches that are currently used, is expected to facilitate the development of new applications in the field of light pollution research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2704  
Permanent link to this record
 

 
Author Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A. url  doi
openurl 
  Title An asymptotic formula for skyglow modelling over a large territory Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 485 Issue 2 Pages 2214-2224  
  Keywords Skyglow  
  Abstract An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2258  
Permanent link to this record
 

 
Author Aubé, M.; Simoneau, A.; Wainscoat, R.; Nelson, L. url  doi
openurl 
  Title Modeling the effects of phosphor converted LED lighting to the night sky of the Haleakala Observatory, Hawaii Type Journal Article
  Year 2018 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 478 Issue 2 Pages 1776-1783  
  Keywords Skyglow  
  Abstract The goal of this study is to evaluate the current level of light pollution in the night sky at the Haleakala Observatory on the island of Maui in Hawaii. This is accomplished with a numerical model that was tested in the first International Dark Sky Reserve located in Mont-Mégantic National Park in Canada. The model uses ground data on the artificial light sources present in the region of study, geographical data, and remotely sensed data for: 1) the nightly upward radiance; 2) the terrain elevation; and, 3) the ground spectral reflectance of the region. The results of the model give a measure of the current state of the sky spectral radiance at the Haleakala Observatory. Then, using the current state as a reference point, multiple light conversion plans are elaborated and evaluated using the model. We can thus estimate the expected impact of each conversion plan on the night sky radiance spectrum. A complete conversion to white (LEDs) with (CCT) of 4000K and 3000K are contrasted with a conversion using (PC) amber (LEDs). We include recommendations concerning the street lamps to be used in sensitive areas like the cities of Kahului and Kihei and suggest best lighting practices related to the color of lamps used at night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1907  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: