toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boivin, D.B.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A. url  doi
openurl 
  Title Dose-response relationships for resetting of human circadian clock by light Type Journal Article
  Year 1996 Publication Nature Abbreviated Journal Nature  
  Volume (down) 379 Issue 6565 Pages 540-542  
  Keywords Human Health; Adult; Body Temperature; Circadian Rhythm/*radiation effects; Dose-Response Relationship, Radiation; Humans; *Light; Male; NASA Discipline Number 18-10; NASA Discipline Regulatory Physiology; NASA Program Space Physiology and Countermeasures; Non-NASA Center  
  Abstract Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.  
  Address Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8596632 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 722  
Permanent link to this record
 

 
Author Czeisler, C.A. url  doi
openurl 
  Title Housing Immigrant Children – The Inhumanity of Constant Illumination Type Journal Article
  Year 2018 Publication The New England Journal of Medicine Abbreviated Journal N Engl J Med  
  Volume (down) 379 Issue 2 Pages e3  
  Keywords Human Health; Commentary  
  Abstract  
  Address From the Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, and the Division of Sleep Medicine, Harvard Medical School – both in Boston  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-4793 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29932841 Approved no  
  Call Number GFZ @ kyba @ Serial 1942  
Permanent link to this record
 

 
Author Dominoni, D.M.; Ã…kesson, S.; Klaassen, R.; Spoelstra, K.; Bulla, M. url  doi
openurl 
  Title Methods in field chronobiology Type Journal Article
  Year 2017 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. R. Soc. B  
  Volume (down) 372 Issue 1734 Pages 20160247  
  Keywords Animals  
  Abstract Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1753  
Permanent link to this record
 

 
Author Aubé, M. url  doi
openurl 
  Title Physical behaviour of anthropogenic light propagation into the nocturnal environment Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume (down) 370 Issue Pages 20140117  
  Keywords Skyglow; artificial light at night; light pollution; radiative transfer; atmospheric effects; scattering; methods; numerical; sensitivity analysis  
  Abstract Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005: Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.  
  Address Département de physique, Cégep de Sherbrooke, Sherbrooke, Quebec, Canada  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1115  
Permanent link to this record
 

 
Author Gaston, K.J.; Visser, M.E.; Hölker, F. url  doi
openurl 
  Title The biological impacts of artificial light at night: the research challenge Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume (down) 370 Issue Pages 20140133  
  Keywords Commentary; communities; dose-response; individuals; light spectrum; night-time  
  Abstract  
  Address 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: