|   | 
Details
   web
Records
Author Puschnig, J.; Wallner, S.; Posch, T.
Title Circalunar variations of the night sky brightness – an FFT perspective on the impact of light pollution Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume (down) 492 Issue 2 Pages 2622-2637
Keywords Skyglow; Moonlight
Abstract Circa-monthly activity conducted by moonlight is observed in many species on Earth. Given the vast amount of artificial light at night (ALAN) that pollutes large areas around the globe, the synchronization to the circalunar cycle is often strongly perturbed. Using 2-yr data from a network of 23 photometers (Sky Quality Meters; SQM) in Austria (latitude ∼48°), we quantify how light pollution impacts the recognition of the circalunar periodicity. We do so via frequency analysis of nightly mean sky brightnesses using Fast Fourier Transforms. A very tight linear relation between the mean zenithal night sky brightness (NSB) given in magSQMarcsec−2 and the amplitude of the circalunar signal is found, indicating that for sites with a mean zenithal NSB brighter than 16.5 magSQMarcsec−2 the lunar rhythm practically vanishes. This finding implies that the circalunar rhythm is still detectable (within the broad bandpass of the SQM) at most places around the globe, but its amplitude against the light polluted sky is strongly reduced. We find that the circalunar contrast in zenith is reduced compared to ALAN-free sites by factors of 19 in the state capital of Linz (∼200 000 inhabitants) and 13 in small towns, e.g. Freistadt and Mattighofen, with less than 10 000 inhabitants. Only two of our sites, both situated in national parks (Bodinggraben and Zöblboden), show natural circalunar amplitudes. At our urban sites, we further detect a strong seasonal signal that is linked to the amplification of anthropogenic skyglow during the winter months due to climatological conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2838
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S.
Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
Year 2012 Publication Nature Abbreviated Journal Nature
Volume (down) 491 Issue 7425 Pages 594-598
Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology
Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23151476; PMCID:PMC3549331 Approved no
Call Number IDA @ john @ Serial 238
Permanent link to this record
 

 
Author Simoneau, A.; Aubé, M.; Bertolo, A.
Title Multispectral analysis of the night sky brightness and its origin for the Asiago Observatory, Italy Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume (down) 491 Issue 3 Pages 4398-4405
Keywords Skyglow; light pollution; numerical methods; Site testing; Italy; Observatories
Abstract Night protection has been a major concern for astronomers since the electrification of cities and is beginning to be recognized as a major environmental problem. In recent years, regulations have been put in place through the establishment of Dark Sky Reserves that impose stringent constraints on lighting practices for cities in protected areas. Astronomers from the Asiago Observatory, located in the Veneto region of Italy, would like to create an area of this nature around their facilities to improve and protect the quality of their astronomical observations. This study assesses the current state of the sky in the region through numerical modelling using the latest improvements to the ILLUMINA model and aims to identify the main contributing sources of artificial light. The explicit calculation of the contribution of private residential lighting helps to discern the origin of the light. We also present a new approach for extracting an estimate of the distribution of lamp technology in a region from images taken from the International Space Station.
Address Bishop’s University, 2600 rue College, Sherbrooke, Québec J1M 1Z7, Canada; alsimoneau(at)gmail.com
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2790
Permanent link to this record
 

 
Author Kocifaj, M.; Kundracik, F.; Bilý, O.
Title Emission spectra of light-pollution sources determined from the light-scattering spectrometry of the night sky Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume (down) 491 Issue 4 Pages 5586-5594
Keywords Skyglow; Remote Sensing
Abstract The emission spectrum of a light-pollution source is a determining factor for modelling artificial light at night. The spectral composition of skyglow is normally derived from the initial spectra of all artificial light sources contributing to the diffuse illumination of an observation point. However, light scattering in the ambient atmosphere imposes a wavelength-specific distortion on the optical signals captured by the measuring device. The nature of the emission, the spectra and the light-scattering phenomena not only control the spectral properties of the ground-reaching radiation, but also provide a unique tool for remote diagnosis and even identification of the emission spectra of the light-polluting sources. This is because the information contained in the night-sky brightness is preferably measured in directions towards a glowing dome of light over the artificial source of light. We have developed a new method for obtaining the emission spectra using remote terrestrial sensing of the bright patches of sky associated with a source. Field experiments conducted in Vienna and Bratislava have been used to validate the theoretical model and the retrieval method. These experiments demonstrate that the numerical inversion is successful even if the signal-to-noise ratio is small. The method for decoding the emission spectra by the light-scattering spectrometry of a night sky is a unique approach that enables for (i) a systematic characterization of the light-pollution sources over a specific territory, and (ii) a significant improvement in the numerical prediction of skyglow changes that we can expect at observatories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2793
Permanent link to this record
 

 
Author Kocifaj, M.; Bará, S.
Title Two-index model for characterizing site-specific night sky brightness patterns Type Journal Article
Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume (down) 490 Issue 2 Pages 1953-1960
Keywords Skyglow
Abstract The determination of the all-sky radiance distribution produced by artificial light sources is a computationally demanding task that generally requires intensive calculations. In this paper, we develop an analytical formulation that provides the all-sky radiance distribution produced by an artificial light source as an explicit and analytical function of the observation direction, depending on two single parameters that characterize the overall effects of the atmosphere. One of these parameters is related to the effective attenuation of the light beams, whereas the other accounts for the overall asymmetry of the combined scattering processes in molecules and aerosols. Using this formulation, a wide range of all-sky radiance distributions can be efficiently and accurately calculated in a short time. This substantial reduction in the number of required parameters, in comparison with other approaches that are currently used, is expected to facilitate the development of new applications in the field of light pollution research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2704
Permanent link to this record