|   | 
Details
   web
Records
Author Wang, X.; Liu, G.; Coscieme, L.; Giannetti, B.F.; Hao, Y.; Zhang, Y.; Brown, M.T.
Title Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data Type Journal Article
Year 2019 Publication Ecological Modelling Abbreviated Journal Ecological Modelling
Volume (down) 397 Issue Pages 1-15
Keywords Remote Sensing
Abstract Emergy analysis is one of the ecological thermodynamics methods. With a specific set of indicators, it is proved to be highly informative for sustainability assessment of national/regional economies. However, a large amount of data needed for its calculation are from official statistical data by administrative divisions. The spatialization of emergy in early researches were limited to the administrative boundaries. The emergy inside an administrative boundary renders a single value, which hides plenty of information for more precise regional planning.

This study develops a new methodology for mapping the spatial distribution of emergy density of a region. The renewable resource distribution can be mapped based on latest geospatial datasets and GIS technology, instead of solely relying on statistics and yearbooks data. Besides, a new spatialization method of non-renewable emergy based on DMSP-OLS nighttime lights data is proposed. Combined with the radiation calibration data, the problem of light saturation of DMSP-OLS nighttime lights data was solved to improve the emergy spatial detail of city centers. With a case study of Jing-Jin-Ji region, results showed that this method could generate a high-resolution map of emergy use, and depict human disturbance to the environment in a more precise manner. This may provide supportive information for more precise land use planning, strategic layout and policy regulation, and is helpful for regional sustainable development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2192
Permanent link to this record
 

 
Author Bamford, S.P.; Nichol, R.C.; Baldry, I.K.; Land, K.; Lintott, C.J.; Schawinski, K.; Slosar, A.; Szalay, A.S.; Thomas, D.; Torki, M.; Andreescu, D.; Edmondson, E.M.; Miller, C.J.; Murray, P.; Raddick, M.J.; Vandenberg, J.
Title Galaxy Zoo: the dependence of morphology and colour on environment Type Journal Article
Year 2009 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume (down) 393 Issue 4 Pages 1324-1352
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 902
Permanent link to this record
 

 
Author Boivin, D.B.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A.
Title Dose-response relationships for resetting of human circadian clock by light Type Journal Article
Year 1996 Publication Nature Abbreviated Journal Nature
Volume (down) 379 Issue 6565 Pages 540-542
Keywords Human Health; Adult; Body Temperature; Circadian Rhythm/*radiation effects; Dose-Response Relationship, Radiation; Humans; *Light; Male; NASA Discipline Number 18-10; NASA Discipline Regulatory Physiology; NASA Program Space Physiology and Countermeasures; Non-NASA Center
Abstract Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.
Address Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:8596632 Approved no
Call Number LoNNe @ kagoburian @ Serial 722
Permanent link to this record
 

 
Author Czeisler, C.A.
Title Housing Immigrant Children – The Inhumanity of Constant Illumination Type Journal Article
Year 2018 Publication The New England Journal of Medicine Abbreviated Journal N Engl J Med
Volume (down) 379 Issue 2 Pages e3
Keywords Human Health; Commentary
Abstract
Address From the Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, and the Division of Sleep Medicine, Harvard Medical School – both in Boston
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-4793 ISBN Medium
Area Expedition Conference
Notes PMID:29932841 Approved no
Call Number GFZ @ kyba @ Serial 1942
Permanent link to this record
 

 
Author Dominoni, D.M.; Ã…kesson, S.; Klaassen, R.; Spoelstra, K.; Bulla, M.
Title Methods in field chronobiology Type Journal Article
Year 2017 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. R. Soc. B
Volume (down) 372 Issue 1734 Pages 20160247
Keywords Animals
Abstract Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8436 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1753
Permanent link to this record