|   | 
Details
   web
Records
Author Duan, H.; Cao, Z.; Shen, M.; Liu, D.; Xiao, Q.
Title Detection of illicit sand mining and the associated environmental effects in China's fourth largest freshwater lake using daytime and nighttime satellite images Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume (down) 647 Issue Pages 606-618
Keywords Remote Sensing; Regulation
Abstract Illegal sand mining activities are rampant in coastal and inland water around the world and result in increased water turbidity, reduced water transparency, damage to fish spawning sites and adverse effects on the health of aquatic ecosystems. However, many sand dredging vessels hide during the day and work at night, rendering conventional monitoring measures ineffective. In this study, illegal sand dredging activities and the associated aquatic environmental effects were investigated in Lake Hongze (the fourth largest freshwater lake in China) using both conventional daytime satellite data, including MODIS/Aqua and Landsat TM/ETM data as well as VIIRS Day/Night Band (DNB) nighttime light (NTL) data, the following results were obtained. (1) The Landsat data revealed that sand dredging vessels first appeared in February 2012 and their number (monthly average: 658) peaked in 2016, and sand dredging stopped after March 2017. (2) The VIIRS NTL data were satisfactory for monitoring nighttime illegal dredging activities, and they more accurately reflected the temporal and spatial distribution characteristics of dredging vessels due to their high frequency. (3) Observations from the MODIS data acquired since 2002 showed three distinct stages of changes in the suspended particulate matter (SPM) concentrations of Lake Hongze that were consistent with the temporal distributions of sand dredging vessels. (4) The contribution of dredging vessels to the increases in SPM concentration was quantitatively determined, and nighttime sand dredging activities were found to have disturbed the waters more significantly. (5) The effectiveness of government measures implemented at various stages to control illegal sand dredging activities were scientifically evaluated. This study provides technological support for government monitoring and the control of illegal sand dredging activities and can serve as a valuable reference for water bodies similar to Lake Hongze worldwide. The evaluation method developed in this study could potentially be applied at a global scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1970
Permanent link to this record
 

 
Author Langbehn, T.; Aksnes, D.; Kaartvedt, S.; Fiksen, Ø.; Jørgensen, C.
Title Light comfort zone in a mesopelagic fish emerges from adaptive behaviour along a latitudinal gradient Type Journal Article
Year 2019 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume (down) 623 Issue Pages 161-174
Keywords Animals; Moonlight
Abstract Throughout the oceans, small fish and other micronekton migrate between daytimedepths of several hundred meters and near-surface waters at night. These diel vertical migrationsof mesopelagic organisms structure pelagic ecosystems through trophic interactions, and are akey element in the biological carbon pump. However, depth distributions and migration ampli-tude vary greatly. Suggested proximate causes of the migration such as oxygen, temperature, andlight often correlate and therefore the causal underpinnings have remained unclear. Using meso-pelagic fishes and the Norwegian Sea as a study system, we developed a dynamic state variablemodel that finds optimal migration patterns that we validate with acoustic observations along alatitudinal gradient. The model describes predation risk and bioenergetics, and maximizes ex -pected energy surplus, a proxy for Darwinian fitness. The model allows us to disentangle the driv-ers of migration and make predictions about depth distribution and related fitness consequencesalong a latitudinal trajectory with strong gradients in environmental drivers and vertical distribu-tion of scattering layers. We show that the model-predicted vertical migration of mesopelagicfishes matches that observed along this transect. For most situations, modelled mesopelagic fishbehaviour can be well described by a light comfort zone near identical to that derived from obser-vations. By selectively keeping light or temperature constant, the model reveals that temperature,in comparison with light, has little effect on depth distribution. We find that water clarity, whichlimits how deeply light can penetrate into the ocean, structures daytime depths, while surfacelight at night controlled the depth of nocturnal ascents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2598
Permanent link to this record
 

 
Author Lunn, R.M.; Blask, D.E.; Coogan, A.N.; Figueiro, M.G.; Gorman, M.R.; Hall, J.E.; Hansen, J.; Nelson, R.J.; Panda, S.; Smolensky, M.H.; Stevens, R.G.; Turek, F.W.; Vermeulen, R.; Carreon, T.; Caruso, C.C.; Lawson, C.C.; Thayer, K.A.; Twery, M.J.; Ewens, A.D.; Garner, S.C.; Schwingl, P.J.; Boyd, W.A.
Title Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption Type Journal Article
Year 2017 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume (down) 607-608 Issue Pages 1073-1084
Keywords Human Health
Abstract The invention of electric light has facilitated a society in which people work, sleep, eat, and play at all hours of the 24-hour day. Although electric light clearly has benefited humankind, exposures to electric light, especially light at night (LAN), may disrupt sleep and biological processes controlled by endogenous circadian clocks, potentially resulting in adverse health outcomes. Many of the studies evaluating adverse health effects have been conducted among night- and rotating-shift workers, because this scenario gives rise to significant exposure to LAN. Because of the complexity of this topic, the National Toxicology Program convened an expert panel at a public workshop entitled “Shift Work at Night, Artificial Light at Night, and Circadian Disruption” to obtain input on conducting literature-based health hazard assessments and to identify data gaps and research needs. The Panel suggested describing light both as a direct effector of endogenous circadian clocks and rhythms and as an enabler of additional activities or behaviors that may lead to circadian disruption, such as night-shift work and atypical and inconsistent sleep-wake patterns that can lead to social jet lag. Future studies should more comprehensively characterize and measure the relevant light-related exposures and link these exposures to both time-independent biomarkers of circadian disruption and biomarkers of adverse health outcomes. This information should lead to improvements in human epidemiological and animal or in vitro models, more rigorous health hazard assessments, and intervention strategies to minimize the occurrence of adverse health outcomes due to these exposures.
Address Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States. Electronic address: boydw@niehs.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:28724246 Approved no
Call Number LoNNe @ kyba @ Serial 1689
Permanent link to this record
 

 
Author Maggi, E.; Benedetti-Cecchi, L.
Title Trophic compensation stabilizes marine primary producers exposed to artificial light at night Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume (down) 606 Issue Pages 1-5
Keywords Plants; Animals; Ecology
Abstract Artificial light at night (ALAN) is a widespread phenomenon along coastal areas. Despite increasing evidence of pervasive effects of ALAN on patterns of species distribution and abundance, the potential of this emerging threat to alter ecological processes in marine ecosystems has remained largely unexplored. Here, we show how exposure to white LED lighting, comparable to that experienced along local urbanized coasts, significantly enhanced the impact of grazing gastropods on epilithic microphytobenthos (MPB). ALAN increased both the photosynthetic biomass of MPB and the grazing pressure of gastropods, such that consumers compensated for the positive effect of night lighting on primary producers. Our results indicate that trophic interactions can provide a stabilizing compensatory mechanism against ALAN effects in natural food webs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2063
Permanent link to this record
 

 
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S.
Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume (down) 600 Issue Pages 179-192
Keywords Animals
Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1967
Permanent link to this record