toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muheim, R.; Phillips, J.B.; Akesson, S. url  doi
openurl 
  Title Polarized light cues underlie compass calibration in migratory songbirds Type Journal Article
  Year 2006 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume (down) 313 Issue 5788 Pages 837-839  
  Keywords Alaska; *Animal Migration; Animals; Calibration; Cues; *Flight, Animal; Geography; *Light; Magnetics; *Orientation; Seasons; Sparrows/*physiology; Sunlight  
  Abstract Migratory songbirds use the geomagnetic field, stars, the Sun, and polarized light patterns to determine their migratory direction. To prevent navigational errors, it is necessary to calibrate all of these compass systems to a common reference. We show that migratory Savannah sparrows use polarized light cues from the region of sky near the horizon to recalibrate the magnetic compass at both sunrise and sunset. We suggest that skylight polarization patterns are used to derive an absolute (i.e., geographic) directional system that provides the primary calibration reference for all of the compasses of migratory songbirds.  
  Address Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. rmuheim@vt.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16902138 Approved no  
  Call Number IDA @ john @ Serial 243  
Permanent link to this record
 

 
Author Walker, W.H. 2nd; Melendez-Fernandez, O.H.; Nelson, R.J. url  doi
openurl 
  Title Prior exposure to dim light at night impairs dermal wound healing in female C57BL/6 mice Type Journal Article
  Year 2019 Publication Archives of Dermatological Research Abbreviated Journal Arch Dermatol Res  
  Volume (down) 311 Issue 7 Pages 573-576  
  Keywords Animals; mouse models; Skin; Human Health  
  Abstract Artificial light at night (LAN) is a pervasive phenomenon in today's society, and the detrimental consequences of LAN exposure are becoming apparent. LAN is associated with the increased incidence of metabolic disorders, cancers, mood alterations, and immune dysfunction in mammals. Consequently, we examined the effects of dim LAN (DLAN) on wound healing. Female C57BL/6 mice were housed for 3 weeks in DLAN or LD conditions prior to wounding. Following wounding, mice were maintained in either their previous light conditions or switched to the opposite lighting conditions for 3 weeks. DLAN prior to wounding impaired healing; specifically, mice in DLAN/DLAN had significantly larger wounds on day 8. Additionally, mice in DLAN/LD had significantly larger wounds on days 5, 7, 8, and 9, and increased average time to closure. These data demonstrate a potential harmful effect of DLAN on wound healing that should be considered and may represent a target for therapeutic intervention.  
  Address Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-3696 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31144020 Approved no  
  Call Number GFZ @ kyba @ Serial 2515  
Permanent link to this record
 

 
Author Wang, X.; Cheng, H. url  doi
openurl 
  Title Study on the Temporal and Spatial Pattern Differences of Chinese Light Curl Based on DMSP/OLS Type Journal Article
  Year 2019 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume (down) 310 Issue Pages 032072  
  Keywords Remote Sensing  
  Abstract Nighttime light data can detect surface gleams that can intuitively reflect human socioeconomic activity.This paper uses the DMSP/OLS nighttime lighting data from 2001 to 2007 to analyze the coupling relationship between regional economic development and nighttime light intensity in China using regression model.The results show that the brightest areas of nighttime light are mainly concentrated in the Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and the Pearl River Delta region. With the change of theyear, the brightness of the three regions is brighter year by year, indicating that the economy is more and more developed.The linear regression model of total brightness and GDP of regional light: Y=792.218+0.024X, linear slope is 0.024, indicating a positive correlation trend.The provinces and cities with the highest total brightness of the provinces and cities are Guangdong Province, Shandong Province, and Jiangsu Province, and the lowest provinces and cities are Qinghai Province and Tibet Autonomous Region.The total brightness of regional lights in China's provinces and cities is well coupled with GDP. The total brightness of regional lights in all provinces and cities is weakened from east to west. The brightness of the 11 provinces in the eastern region is the strongest, including Beijing, Tianjin, Hebei, Liaoning, Shanghai, and Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan Province.The second most powerful lighting is the eight provinces in the central region including Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan.The weakest lighting is in the western regions of Sichuan, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia and other provinces (cities).In the east of the Hu Huanyong line, the nighttime lighting is higher than the west of the Hu Huanyong line.The eastern part of China's seven geographical divisions (Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Fujian, and Taiwan) has the brightest night lights.The northwestern region (Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, and Inner Mongolia Autonomous Region) has a weak night light.The brightness information of nighttime remote sensing data selected in this study can reflect the level of regional economic development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2670  
Permanent link to this record
 

 
Author Seymoure, B. M., Linares, C., & White, J. doi  openurl
  Title Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms Type Journal Article
  Year 2019 Publication Journal of Zoology Abbreviated Journal  
  Volume (down) 308 Issue 2 Pages 93-110  
  Keywords Animals; Ecology; color space; ecological consequences; just noticeable difference; light pollution; photoreceptors; radiance; visual models; visual systems  
  Abstract Humans have drastically altered nocturnal environments with electric lighting. Animals depend on natural night light conditions and are now being inundated with artificial lighting. There are numerous artificial light sources that differ in spectral composition that should affect the perception of these light sources and due to differences in animal visual systems, the differences in color perception of these anthropogenic light sources should vary significantly. The ecological and evolutionary ramifications of these perceptual differences of light sources remain understudied. Here, we quantify the radiance of nine different street lights comprised of four different light sources: Metal Halide, Mercury Vapor, Light Emitting Diodes, and High‐Pressure Sodium and model how five animal visual systems will be stimulated by these light sources. We calculated the number of photons that photoreceptors in different visual systems would detect. We selected five visual systems: avian UV/VIS, avian V/VIS, human, wolf and hawk moth. We included non‐visual photoreceptors of vertebrates known for controlling circadian rhythms and other physiological traits. The nine light types stimulated visual systems and the photoreceptors within the visual systems differently. Furthermore, we modelled the chromatic contrast (Just Noticeable Differences [JNDs]) and color space overlap for each light type comparison for each visual system to see if organisms would perceive the lights as different colors. The JNDs of most light type comparisons were very high, indicating most visual systems would detect all light types as different colors, however mammalian visual systems would perceive many lights as the same color. We discuss the importance of understanding not only the brightness of artificial light types, but also the spectral composition of light types, as most organisms have different visual systems from humans. Thus, for researchers to understand how artificial light sources affect the visual environment of specific organisms and thus mitigate the effects, spectral information is crucial.  
  Address Department of Biology, Colorado State University, Fort Collins, CO, USA; brett.seymoure(at)gmail.com  
  Corporate Author Thesis  
  Publisher ZSL Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2306  
Permanent link to this record
 

 
Author Fukuda, H.; Torisawa, S.; Sawada, Y.; Takagi, T. url  doi
openurl 
  Title Developmental changes in behavioral and retinomotor responses of Pacific bluefin tuna on exposure to sudden changes in illumination Type Journal Article
  Year 2010 Publication Aquaculture Abbreviated Journal  
  Volume (down) 305 Issue 1-4 Pages 73-78  
  Keywords animals; fish; animal behavior  
  Abstract Schooling behavior traits during the process of retinomotor response from scotopic to photopic vision were examined in cultivated juvenile Pacific bluefin tuna (PBT) at 3 different ages. After a sudden change in illumination from darkness to 300 lx, retinal adaptations changed from scotopic to photopic vision. Retinomotor and schooling indices showed strong agreement, with juvenile PBTs forming polarized schools upon complete retinal adaptation to photopic vision. The behavioral and retinal adaptation to sudden illumination took 20, 15, and 10 min after illumination in PBT 25, 40, and 55 days after hatching (dah). At 40 dah, PBT took a longer time to adapt than fish aged 55 dah and showed the highest swimming speed, including momentary bursts of swimming immediately after illumination. This suggested that these fish were swimming at high speed under poor visibility conditions. In contrast, PBT at 55 dah showed a gradual increase in swimming speed that correlated with their retinal adaptation. Therefore, behavioral and retinal adaptation traits changed during growth, suggesting that the high mortality in PBT around 40 dah, due to collisions with the tank and net walls at dawn, may be because these adapt more slowly than fish at 55 dah and were swimming at a relatively high speed under conditions of poor visibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1589  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: