toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Georgiadis, M.; Mavraki, N.; Koutsikopoulos, C.; Tzanatos, E. url  doi
openurl 
  Title Spatio-temporal dynamics and management implications of the nightly appearance of Boops boops (Acanthopterygii, Perciformes) juvenile shoals in the anthropogenically modified Mediterranean littoral zone Type Journal Article
  Year 2014 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume (down) 734 Issue 1 Pages 81-96  
  Keywords seabreams; animals; Boops boops; fishes; Aegean; Mediterranean; littoral; light at night; anthropogenic modification; fisheries management; light pollution  
  Abstract A remarkable phenomenon of dense Boops boops shoals appearing almost adjacent to the shoreline during nighttime is known to the locals of island communities of the Aegean Sea (eastern Mediterranean). In this work, we investigated this appearance testing the hypotheses that (a) it may occur only in anthropogenically modified locations (as suggested by previous observations), (b) the migration pattern to the littoral is not arbitrary but synchronized to the sunset/sunrise, (c) fish abundance is affected by location, season and/or natural (moon) light fluctuations. Quantitative sampling included visual observations from the coast at five stations in Syros (Cyclades, Greece) from July 2009 to September 2010. Both hypotheses concerning occurrence only in anthropogenically modified locations and timing with sunset/sunrise were confirmed. Fish abundance was modelled using generalized additive models, demonstrating a seasonal pattern and revealing significant differences among sampling stations, but no moon-phase effects. The phenomenon investigated here has implications for fisheries management, as the shoal proximity to the shore renders them prone to illegal harvesting (seasonally at high abundances), aggravating the problem of illegal, unreported and unregulated fishing. Further considerations on the integrated management of the coastal zone arise, especially concerning the effects of habitat structural modification and light pollution.  
  Address Department of Biology, Section of Animal Biology, University of Patras, 26504, Rio, Patras, Greece  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-8158 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 311  
Permanent link to this record
 

 
Author Schawinski, K.; Urry, C. M.; S., Coppi, P.; Bamford, S. P.; Treister, E.; et al. url  openurl
  Title Galaxy zoo: the fundamentally different co-evolution of supermassive black holes and their early-and late-type host galaxies Type Journal Article
  Year 2010 Publication The Astrophysical Journal Abbreviated Journal  
  Volume (down) 711 Issue 1 Pages 284  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 970  
Permanent link to this record
 

 
Author Garratt, M.J.; Jenkins, S.R.; Davies, T.W. url  doi
openurl 
  Title Mapping the consequences of artificial light at night for intertidal ecosystems Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume (down) 691 Issue Pages 760-768  
  Keywords Ecology; Lighting  
  Abstract Widespread coastal urbanization has resulted in artificial light pollution encroaching into intertidal habitats, which are highly valued by society for ecosystem services including coastal protection, climate regulation and recreation. While the impacts of artificial light at night in terrestrial and riparian ecosystems are increasingly well documented, those on organisms that reside in coastal intertidal habitats are less well explored. The distribution of artificial light at night from seaside promenade lighting was mapped across a sandy shore, and its consequences for macroinvertebrate community structure quantified accounting for other collinear environmental variables known to shape biodiversity in intertidal ecosystems (shore height, wave exposure and organic matter content). Macroinvertebrate community composition significantly changed along artificial light gradients. Greater numbers of species and total community biomass were observed with increasing illumination, a relationship that was more pronounced (increased effects size) with increasing organic matter availability. Individual taxa exhibited different relationships with artificial light illuminance; the abundances of 27% of non-rare taxa [including amphipods (Amphipoda), catworms (Nephtys spp.), and sand mason worms (Lanice conchilega)] decreased with increasing illumination, while 20% [including tellins (Tellinidae spp.), lugworms (Arenicola marina) and ragworms (Nereididae spp.)] increased. Possible causes of these relationships are discussed, including direct effects of artificial light on macroinvertebrate behaviour and indirect effects via trophic interactions. With increasing light pollution in coastal zones around the world, larger scale changes in intertidal ecosystems could be occurring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2590  
Permanent link to this record
 

 
Author Filipski, E.; Subramanian, P.; Carriere, J.; Guettier, C.; Barbason, H.; Levi, F. url  doi
openurl 
  Title Circadian disruption accelerates liver carcinogenesis in mice Type Journal Article
  Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res  
  Volume (down) 680 Issue 1-2 Pages 95-105  
  Keywords Human Health; Animals; Alanine Transaminase/blood; Animals; Aspartate Aminotransferases/blood; Bile Duct Neoplasms/chemically induced/pathology; Bile Ducts, Intrahepatic/drug effects/pathology; Body Weight/drug effects; Carcinogens/administration & dosage/*toxicity; Carcinoma, Hepatocellular/chemically induced/pathology; Cholangiocarcinoma/chemically induced/pathology; Circadian Rhythm/*drug effects; Diethylnitrosamine/administration & dosage/*toxicity; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Liver/drug effects/pathology; Liver Neoplasms/blood/*chemically induced/pathology; Male; Mice; Neoplasms, Multiple Primary/chemically induced/pathology; Sarcoma/chemically induced/pathology; Time Factors  
  Abstract BACKGROUND: The circadian timing system rhythmically controls behavior, physiology, cellular proliferation and xenobiotic metabolism over the 24-h period. The suprachiasmatic nuclei in the hypothalamus coordinate the molecular clocks in most mammalian cells through an array of circadian physiological rhythms including rest-activity, body temperature, feeding patterns and hormonal secretions. As a result, shift work that involves circadian disruption is probably carcinogenic in humans. In experimental models, chronic jet-lag (CJL) suppresses rest-activity and body temperature rhythms and accelerates growth of two transplantable tumors in mice. CJL also suppresses or significantly alters the expression rhythms of clock genes in liver and tumors. Circadian clock disruption from CJL downregulates p53 and upregulates c-Myc, thus favoring cellular proliferation. Here, we investigate the role of CJL as a tumor promoter in mice exposed to the hepatic carcinogen, diethylnitrosamine (DEN). METHODS: In experiment 1 (Exp 1), the dose-dependent carcinogenicity of chronic intraperitoneal (i.p.) administration of DEN was explored in mice. In Exp 2, mice received DEN at 10 mg/kg/day (cumulative dose: 243 mg/kg), then were randomized to remain in a photoperiodic regimen where 12 h of light alternates with 12 h of darkness (LD 12:12) or to be submitted to CJL (8-h advance of light onset every 2 days). Rest-activity and body temperature were monitored. Serum liver enzymes were determined repeatedly. Mice were sacrificed and examined for neoplastic lesions at 10 months. RESULTS: In Exp 1, DEN produced liver cancers in all the mice receiving 10 mg/kg/day. In Exp 2, mice on CJL had increased mean plasma levels of aspartate aminotransferase and more liver tumors as compared to LD mice at approximately 10 months (p = 0.005 and 0.028, respectively). The mean diameter of the largest liver tumor was twice as large in CJL vs LD mice (8.5 vs 4.4 mm, p = 0.027). In LD, a single histologic tumor type per liver was observed. In CJL, up to four different types were associated in the same liver (hepatocellular- or cholangio-carcinomas, sarcomas or mixed tumors). DEN itself markedly disrupted the circadian rhythms in rest-activity and body temperature in all the mice. DEN-induced disruption was prolonged for >or= 3 months by CJL exposure. CONCLUSIONS: The association of circadian disruption with chronic DEN exposure suggests that circadian clocks actively control the mechanisms of liver carcinogenesis in mice. Persistent circadian coordination may further be critical for slowing down and/or reverting cancer development after carcinogen exposure.  
  Address INSERM, U776 Rythmes Biologiques et Cancers, Hopital Paul Brousse, Villejuif F-94807, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-5107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19833225 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 747  
Permanent link to this record
 

 
Author Oesch-Bartlomowicz, B.; Weiss, C.; Dietrich, C.; Oesch, F. url  doi
openurl 
  Title Circadian rhythms and chemical carcinogenesis: Potential link. An overview Type Journal Article
  Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res  
  Volume (down) 680 Issue 1-2 Pages 83-86  
  Keywords Human Health; Animals; Carcinogens/*toxicity; Cell Cycle/physiology; Cell Cycle Proteins/physiology; Circadian Rhythm/*drug effects/physiology; DNA/drug effects; DNA Damage; DNA Repair; Homeostasis/physiology; Humans; Neoplasms/*etiology/physiopathology; Period Circadian Proteins/metabolism  
  Abstract Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.  
  Address ECNIS Unit, University of Mainz, D-55131 Mainz, Germany. oeschb@uni-mainz.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-5107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19836463 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: