|   | 
Details
   web
Records
Author van Hasselt, S.J.; Hut, R.A.; Allocca, G.; Vyssotski, A.L.; Piersma, T.; Rattenborg, N.C.; Meerlo, P.
Title Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese Type Journal Article
Year (down) 2021 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume in press Issue Pages 116444
Keywords Animals; Skyglow
Abstract In modern society the night sky is lit up not only by the moon but also by artificial light devices. Both of these light sources can have a major impact on wildlife physiology and behaviour. For example, a number of bird species were found to sleep several hours less under full moon compared to new moon and a similar sleep-suppressing effect has been reported for artificial light at night (ALAN). Cloud cover at night can modulate the light levels perceived by wildlife, yet, in opposite directions for ALAN and moon. While clouds will block moon light, it may reflect and amplify ALAN levels and increases the night glow in urbanized areas. As a consequence, cloud cover may also modulate the sleep-suppressing effects of moon and ALAN in different directions. In this study we therefore measured sleep in barnacle geese (Branta leucopsis) under semi-natural conditions in relation to moon phase, ALAN and cloud cover. Our analysis shows that, during new moon nights stronger cloud cover was indeed associated with increased ALAN levels at our study site. In contrast, light levels during full moon nights were fairly constant, presumably because of moonlight on clear nights or because of reflected artificial light on cloudy nights. Importantly, cloud cover caused an estimated 24.8% reduction in the amount of night-time NREM sleep from nights with medium to full cloud cover, particularly during new moon when sleep was unaffected by moon light. In conclusion, our findings suggest that cloud cover can, in a rather dramatic way, amplify the immediate effects of ALAN on wildlife. Sleep appears to be highly sensitive to ALAN and may therefore be a good indicator of its biological effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3239
Permanent link to this record
 

 
Author Li, F.; Li, E.; Zhang, C.; Samat, A.; Liu, W.; Li, C.; Atkinson, P.
Title Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data Type Journal Article
Year (down) 2021 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 13 Issue 2 Pages 212
Keywords Remote Sensing
Abstract Impervious surfaces have important effects on the natural environment, including promoting hydrological run-off and impeding evapotranspiration, as well as increasing the urban heat island effect. Obtaining accurate and timely information on the spatial distribution and dynamics of urban surfaces is, thus, of paramount importance for socio-economic analysis, urban planning, and environmental modeling and management. Previous studies have indicated that the fusion of multi-source remotely sensed imagery can increase the accuracy of prediction for impervious surface information across large areas. However, the majority of them are limited to the use of specific data sources to construct a few features with which it can be challenging to characterize adequately the variation in impervious surfaces over large areas. Thus, impervious surface maps are often presented with high uncertainty. In response to this problem, we proposed the use of multi-temporal MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data to construct a more general and robust feature set for large-area artificial impervious surface percentage (AISP) prediction. Three fusion methods were proposed for application to multi-temporal MODIS surface reflectance product (MOD09A1) and Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) Day/Night Band (DNB) data to construct three different types of features: spectral features, index features (band calculations), and fusion features. These features were then used as variables in a random-forest-based AISP prediction model. The model was fitted to China and then applied to predict AISP across Asia. Fifteen typical cities from different regions of Asia were selected to assess the accuracy of the prediction model. The use of multi-temporal MODIS and VIIRS DNB data was found to significantly increase the accuracy of prediction for large-area AISP. The feature set constructed in this research was demonstrated to be suitable for large-area AISP prediction, and the random forest model based on optimization of the selected features achieved the highest accuracy, amongst benchmarks, with testing R2 of 0.690, and testing RMSE of 0.044 in 2018, respectively. In addition, to further test the performance of the proposed method, three existing impervious products (GAIA, HBASE, and NUACI) were used to compare quantitatively. The results showed that the predicted AISP achieved superior performance in comparison with others in some areas (e.g., arid areas and cloudy areas).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3241
Permanent link to this record
 

 
Author Wilson, R.; Wakefield, A.; Roberts, N.; Jones, G.
Title Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights Type Journal Article
Year (down) 2021 Publication Parasites & Vectors Abbreviated Journal Parasit Vectors
Volume 14 Issue 1 Pages 28
Keywords Animals; Human Health; Diptera; Light attraction; Phototaxis; Spectral wavelength preferences; Vector
Abstract Light trapping is an important tool for monitoring insect populations. This is especially true for biting Diptera, where light traps play a crucial role in disease surveillance by tracking the presence and abundance of vector species. Physiological and behavioural data have been instrumental in identifying factors that influence dipteran phototaxis and have spurred the development of more effective light traps. However, the development of less attractive domestic lights has received comparatively little interest but could be important for reducing interactions between humans and vector insects, with consequences for reducing disease transmission. Here, we discuss how dipteran eyes respond to light and the factors influencing positive phototaxis, and conclude by identifying key areas for further research. In addition, we include a synthesis of attractive and unattractive wavelengths for a number of vector species. A more comprehensive understanding of how Diptera perceive and respond to light would allow for more efficient vector sampling as well as potentially limiting the risk posed by domestic lighting.
Address School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1756-3305 ISBN Medium
Area Expedition Conference
Notes PMID:33413591; PMCID:PMC7789162 Approved no
Call Number GFZ @ kyba @ Serial 3242
Permanent link to this record
 

 
Author Pérez Vega, C.; Zielinska-Dabkowska, K.M.; Hölker, F.
Title Urban Lighting Research Transdisciplinary Framework—A Collaborative Process with Lighting Professionals Type Journal Article
Year (down) 2021 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Ijerph
Volume 18 Issue 2 Pages 624
Keywords Planning; Lighting
Abstract Over the past decades, lighting professionals have influenced the experience of the night by brightly illuminating streets, buildings, skylines, and landscapes 24/7. When this became the accepted norm, a dual perspective on night-time was shaped and the visual enjoyment of visitors after dusk was prioritized over natural nightscapes (nocturnal landscapes). During this time, researchers of artificial light at night (ALAN) observed and reported a gradual increase in unnatural brightness and a shift in color of the night-time environment. As a consequence, ALAN has been identified as a relevant pollutant of aquatic and terrestrial habitats, and an environmental stressor, which may adversely affect a wide range of organisms, from micro-organisms to humans. Unfortunately, lighting professionals and ALAN researchers usually attempt to solve today’s sustainable urban lighting problems distinctive to their fields of study, without a dialogue between research and practice. Therefore, in order to translate research knowledge as an applicable solution for the lighting practice and to minimize the impact on the environment, a collaborative framework involving a transdisciplinary process with lighting professionals is crucial to potentially bring the practice, research, production, decision-making, and planning closer to each other. This paper presents a framework to help reduce the existing gap of knowledge, because appropriate lighting applications depend upon it. Access to less light polluted nightscapes in urban environments is just as important as access to unpolluted water, food, and air. This call for action towards sustainable urban lighting should be included in future lighting policies to solve the urgent environmental and health challenges facing our world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1660-4601 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3246
Permanent link to this record
 

 
Author Bustamante-Calabria, M.; Sánchez de Miguel, A.; Martín-Ruiz, S.; Ortiz, J.-L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J.
Title Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison Type Journal Article
Year (down) 2021 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 13 Issue 2 Pages 258
Keywords Remote Sensing; COVID-19; skyglow
Abstract ’Lockdown’ periods in response to COVID-19 have provided a unique opportunity to study the impacts of economic activity on environmental pollution (e.g., NO2, aerosols, noise, light). The effects on NO2 and aerosols have been very noticeable and readily demonstrated, but that on light pollution has proven challenging to determine. The main reason for this difficulty is that the primary source of nighttime satellite imagery of the earth is the SNPP-VIIRS/DNB instrument, which acquires data late at night after most human nocturnal activity has already occurred and much associated lighting has been turned off. Here, to analyze the effect of lockdown on urban light emissions, we use ground and satellite data for Granada, Spain, during the COVID-19 induced confinement of the city’s population from 14 March until 31 May 2020. We find a clear decrease in light pollution due both to a decrease in light emissions from the city and to a decrease in anthropogenic aerosol content in the atmosphere which resulted in less light being scattered. A clear correlation between the abundance of PM10 particles and sky brightness is observed, such that the more polluted the atmosphere the brighter the urban night sky. An empirical expression is determined that relates PM10 particle abundance and sky brightness at three different wavelength bands.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3247
Permanent link to this record