toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, P.; Pan, J.; Xie, L.; Zhou, T.; Bai, H.; Zhu, Y. url  doi
openurl 
  Title Spatial–Temporal Evolution and Regional Differentiation Features of Urbanization in China from 2003 to 2013 Type Journal Article
  Year (down) 2019 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 8 Issue 1 Pages 31  
  Keywords Remote Sensing  
  Abstract Quantifying the temporal and spatial patterns of impervious surfaces (IS) is important for assessing the environmental and ecological impacts of urbanization. In order to better extract IS, and to explore the divergence in urbanization in different regions, research on the regional differentiation features and regional change difference features of IS are required. To extract China’s 2013 urban impervious area, we used the 2013 night light (NTL) data and the Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index and enhanced vegetation index (EVI) temporal series data, and used three urban impervious surface extraction indexes—Human Settlements Index, Vegetation-Adjusted NTL Urban Index, and the EVI-adjusted NTL index (EANTLI)—which are recognized as the best and most widely used indexes for extracting urban impervious areas. We used the classification results of the Landsat-8 images as the benchmark data to visually compare and verify the results of the urban impervious area extracted by the three indexes. We determined that the EANTLI index better reflects the distribution of the impervious area. Therefore, we used the EANTLI index to extract the urban impervious area from 2003 to 2013 in the study area, and researched the spatial and temporal differentiation in urban IS. The results showed that China’s urban IS area was 70,179.06 km2, accounting for 0.73% of the country’s land area in 2013, compared with 20,565.24 km2 in 2003, which accounted for 0.21% of the land area, representing an increase of 0.52%. On a spatial scale, like economic development, the distribution of urban impervious surfaces was different in different regions. The overall performance of the urban IS percentage was characterized by a decreasing trend from Northwest China, Southwest China, the Middle Reaches of the Yellow River, Northeast China, the Middle Reaches of the Yangtze River, Southern Coastal China, and Northern Coastal China to Eastern Coastal China. On the provincial scale, the urban IS expansion showed considerable differences in different regions. The overall performance of the Urban IS Expansion index showed that the eastern coastal areas had higher values than the western inland areas. The cities or provinces of Beijing, Tianjin, Jiangsu, and Shanghai had the largest growth in impervious areas. Spatially and temporally quantifying the change in urban impervious areas can help to better understand the intensity of urbanization in a region. Therefore, quantifying the change in urban impervious area has an important role in the study of regional environmental and economic development, policy formulation, and the rational use of resources in both time and space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2172  
Permanent link to this record
 

 
Author Manríquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijón, P.A.; Widdicombe, S.; Pulgar, J.; Manríquez, K.; Quintanilla-Ahumada, D.; Duarte, C. url  doi
openurl 
  Title Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
  Year (down) 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2173  
Permanent link to this record
 

 
Author Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. url  doi
openurl 
  Title Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant Type Journal Article
  Year (down) 2019 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 10 Issue 1 Pages e02550  
  Keywords Ecology; Animals; Plants  
  Abstract Artificial light at night (ALAN) is an increasingly important driver of global change. Lighting directly affects plants, but few studies have investigated indirect effects mediated by interacting organisms. Nocturnal Lepidoptera are globally important pollinators, and pollen transport by moths is disrupted by lighting. Many street lighting systems are being replaced with novel, energy‐efficient lighting, with unknown ecological consequences. Using the wildflower Silene latifolia, we compared pollination success and quality at experimentally lit and unlit plots, testing two major changes to street lighting technology: in lamp type, from high‐pressure sodium lamps to light‐emitting diodes, and in lighting regime, from full‐night (FN) to part‐night (PN) lighting. We predicted that lighting would reduce pollination. S. latifolia was pollinated both diurnally and nocturnally. Contrary to our predictions, flowers under FN lighting had higher pollination success than flowers under either PN lighting or unlit controls, which did not significantly differ from each other. Lamp type, lighting regime, and distance from the light all significantly affected aspects of pollination quality. These results confirm that street lighting could affect plant reproduction through indirect effects mediated by nocturnal insects, and further highlight the possibility for novel lighting technologies to mitigate the effects of ALAN on ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-8925 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2174  
Permanent link to this record
 

 
Author Franklin, M.; Chau, K.; Cushing, L.J.; Johnston, J. url  doi
openurl 
  Title Characterizing flaring from unconventional oil and gas operations in south Texas using satellite observations Type Journal Article
  Year (down) 2019 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume in press Issue Pages  
  Keywords Remote Sensing  
  Abstract Over the past decade, increases in high-volume hydraulic fracturing for oil and gas extraction in the United States have raised concerns with residents living near wells. Flaring, or the combustion of petroleum products into the open atmosphere, is a common practice associated with oil and gas exploration and production, and has been under-examined as a potential source of exposure. We leveraged data from the Visible Infrared Imaging Spectroradiometer (VIIRS) Nightfire satellite product to characterize the extent of flaring in the Eagle Ford Shale region of south Texas, one of the most productive in the nation. Spatiotemporal hierarchical clustering identified flaring sources, and a regression-based approach combining VIIRS information with reported estimates of vented and flared gas from the Railroad Commission of Texas enabled estimation of flared gas volume at each flare. We identified 43,887 distinct oil and gas flares in the study region from 2012-2016, with a peak in activity in 2014 and an estimated 4.5 billion cubic meters of total gas volume flared over the study period. A comparison with well permit data indicated the majority of flares were associated with oil-producing (82%) and horizontally-drilled (92%) wells. Of the 49 counties in the region, 5 accounted for 71% of the total flaring. Our results suggest flaring may be a significant environmental exposure in parts of this region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30657671 Approved no  
  Call Number GFZ @ kyba @ Serial 2175  
Permanent link to this record
 

 
Author Doumbia, E.H.T.; Liousse, C.; Keita, S.; Granier, L.; Granier, C.; Elvidge, C.D.; Elguindi, N.; Law, K. url  doi
openurl 
  Title Flaring emissions in Africa: Distribution, evolution and comparison with current inventories Type Journal Article
  Year (down) 2019 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment  
  Volume 199 Issue Pages 423-434  
  Keywords Remote Sensing  
  Abstract Flaring emissions are a major concern due to large uncertainties in the amount of chemical compounds released into the atmosphere and their evolution with time. A methodology based on DMSP (Defense Meteorological Satellite Program) nighttime light data combined with regional gas flaring volumes from National Oceanic and Atmospheric Administration's National Centers for Environmental Information (NOAA-NCEI) has been developed to estimate flaring emissions. This method is validated in Nigeria where individual field company data are available. The spatial distribution of CO2, CH4, NMVOCs, CO, OC, BC, SO2 and NOx is derived for the African continent for the period 1995–2010.

A range of the emissions due to flaring is estimated based on the range of emission factors (EFs) for each chemical species. An average decrease in CO2 emissions of about 30% is found over Africa from 1995 to 2010, with Nigeria being the largest contributor to this reduction (up to 50%). Changes in the spatial distribution with time indicate local increases, particularly at offshore platforms, which are attributed to a lack of regulations as well as aging infrastructures in oil and gas fields.

Comparisons with current inventories reveal differences in the location and magnitude of point source emissions. For chemical compounds such as NMVOCs and CH4, the ECLIPSE and EDGAR country-level values are considerably higher than the highest flaring emission estimated in this study for 2005. For species such as CO, OC, BC, SO2 and NOx, the emissions provided by the ECLIPSE and EDGAR inventories are generally within the same order of magnitude as the average values found in this study, with the exception of OC, BC and SO2 in which EDGAR provides much lower emissions. These discrepancies are likely due to either differences in the methodologies used to estimate the emissions, in the values of the emission factors considered, or in the definition of flaring sector. Our current estimations suggest that BC, CH4 and CO2 flaring emissions in Africa account for 1–15% (on average 7%), 0.5–8% (on average 2%) and 8–13% (on average 11%) of African total anthropogenic emissions, respectively. The contribution of flaring to African anthropogenic emissions varies widely among countries. For example, in Nigeria the average emissions due to flaring are estimated to be as high as 18% for BC, 10% for CH4 and 50% for CO2, which is significantly greater than the continental average and highlights the importance of emissions in flaring areas.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2176  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: