|   | 
Details
   web
Records
Author Sharma, A.; Goyal, R.
Title Long-term exposure to constant light induces dementia, oxidative stress and promotes aggregation of sub-pathological Abeta42 in Wistar rats Type Journal Article
Year (down) 2020 Publication Pharmacology, Biochemistry, and Behavior Abbreviated Journal Pharmacol Biochem Behav
Volume in press Issue Pages 172892
Keywords Animals; Amyloid beta; Behavior, fluoxetine, rifampicin; Oxidative stress
Abstract Constant exposure to light is prevalent in modern society where light noise, shift work, and jet lag is common. Constant light exposure disrupts circadian rhythm, induces stress and thus influences memory performance. We subjected adult male Wistar rats to a two-month exposure to constant light (LL), constant dark or normal light-dark cycles. Significant cognitive impairment and oxidative stress were observed in LL rats without a significant elevation in soluble Abeta1-42 levels. Next, we examined whether long-term exposure to constant light may accelerate dementia in a sub-pathological Abeta model of rats. Normal control rats received ACSF, AD rats received 440pmol, and sub-pathological Abeta rats (Abeta(s)) received 220pmol of human Abeta42 peptide in a single unilateral ICV administration. Sub-pathological Abeta rats exposed to constant light (LL+Abeta(s)) show significant memory deficits and oxidative damage, although not significantly different from LL rats. Additionally, constant light promoted aggregation of exogenous Abeta42 in LL+Abeta(s) rats shown by the presence of congophilic plaques. Furthermore, chronic fluoxetine treatment (5mg/kg/day) rescued rats from the behavioral deficits, oxidative damage and amyloid aggregation. Whereas, rifampicin treatment (20mg/kg/day) did not reverse the behavioral deficits or oxidative stress but rescued rats from amyloid plaque formation. It was concluded that constant light for two months induces behavioral deficits, oxidative stress, and accelerates aggregation of sub-pathological concentrations of human-Abeta42 peptides in Wistar rats, which is reversed by daily fluoxetine administration.
Address Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India. Electronic address: rohitgoyal@shooliniuniversity.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-3057 ISBN Medium
Area Expedition Conference
Notes PMID:32142744 Approved no
Call Number GFZ @ kyba @ Serial 2841
Permanent link to this record
 

 
Author Cavazzani, S.; Ortolani, S.; Bertolo, A.; Binotto, R.; Fiorentin, P.; Carraro, G.; Saviane, I.; Zitelli, V.
Title Sky Quality Meter and satellite correlation for night cloud-cover analysis at astronomical sites Type Journal Article
Year (down) 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 493 Issue 2 Pages 2463-2471
Keywords Skyglow
Abstract The analysis of night cloud cover is very important for astronomical observations in real time, considering a typical observation time of about 15 minutes, and to provide statistics. In this article, we use the Sky Quality Meter (SQM) for high-resolution temporal analysis of the La Silla and Asiago (Ekar Observatory) sky: 3 and 5 minutes respectively. We investigate the annual temporal evolution of the natural contributions of the sky at a site not influenced by artificial light at night (ALAN) and at one highly influenced. We also make a correlation between GOES and Aqua satellite data and ground-based SQM data to confirm the relationship between the SQM data and cloud cover. We develop an algorithm that allows the use of the SQM for night cloud detection and reach correlations with the nighttime cloud cover detected by the GOES and Aqua satellites of 97.2 per cent at La Silla and 94.6 per cent at Asiago. Our algorithm also classifies photometric (PN) and spectroscopic nights (SN). We measure 59.1 per cent PN and 21.7 per cent SN for a total percentage of clear nights of 80.8 per cent at La Silla in 2018. The respective Ekar Observatory values are 31.1 per cent PN, 24.0 per cent SN and 55.1 per cent of total clear night time. Application to the SQM network would involve the development of long-term statistics and large data forecasting models for site testing and real-time astronomical observation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2842
Permanent link to this record
 

 
Author Simons, A.L.; Yin, X.; Longcore, T.
Title High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure Type Journal Article
Year (down) 2020 Publication Environmental Research Communications Abbreviated Journal Environ. Res. Commun.
Volume 2 Issue 2 Pages 021006
Keywords Skyglow; Remote Sensing
Abstract Exposure to artificial light at night (ALAN) is a significant factor in ecological and epidemiological research. Although levels of exposure are frequently estimated from satellite-based measurements of upward radiance, and the correlation between upward radiance and zenith sky brightness is established, the correlation between upward radiance and the biologically relevant exposure to light experienced from all directions on the ground has not been investigated. Because ground-based exposure to ALAN can depend on local glare sources and atmospheric scattering, ecological and epidemiological studies using upward radiance have relied on an untested relationship. To establish the nature of the relationship between upward radiance and hemispherical scalar illuminance (SI) on the ground and to calibrate future experimental studies of ALAN, we used hemispheric digital photography to measure SI at 515 locations in coastal southern California, and compared those values to co-located satellite-based measures of upward radiance as described by the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite's Day-Night Band (DNB) sensor and zenith downwards radiance as estimated by the World Atlas of Artificial Night Sky Brightness (WA). We found significant variations in SI within the geographic scale defined by the resolutions of both the DNB and WA, as well as in both luminance and color correlated temperature (CCT) across individual image hemispheres. We observed up to two or more orders of magnitude in ALAN exposure within any given satellite-measured unit. Notwithstanding this variation, a linear model of log(SI) (log(SImodeled)), dependent only on the percent of the image hemisphere obscured by structures along the horizon (percent horizon) and log(WA) accounted for 76% of the variation in observed log(SI). DNB does not perform as well in alternative models and consequently future studies seeking to characterize the light environment should be built on WA data when the high temporal resolution of DNB measurements are not needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2515-7620 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2843
Permanent link to this record
 

 
Author Niklaus, S.; Albertini, S.; Schnitzer, T.K.; Denk, N.
Title Challenging a Myth and Misconception: Red-Light Vision in Rats Type Journal Article
Year (down) 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)
Volume 10 Issue 3 Pages
Keywords animals; cones; electroretinogram; husbandry; photoreceptors; rat; red light; retina; rods
Abstract Due to the lack of L-cones in the rodent retina, it is generally assumed that red light is invisible to rodents. Thus, red lights and red filter foils are widely used in rodent husbandry and experimentation allowing researchers to observe animals in an environment that is thought to appear dark to the animals. To better understand red-light vision in rodents, we assessed retinal sensitivity of pigmented and albino rats to far-red light by electroretinogram. We examined the sensitivity to red light not only on the light- but also dark-adapted retina, as red observation lights in husbandry are used during the dark phase of the light cycle. Intriguingly, both rods and cones of pigmented as well as albino rats show a retinal response to red light, with a high sensitivity of the dark-adapted retina and large electroretinogram responses in the mesopic range. Our results challenge the misconception of rodents being red-light blind. Researchers and housing facilities should rethink the use of red observation lights at night.
Address Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche Innovation Center Basel, 4070 Basel, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-2615 ISBN Medium
Area Expedition Conference
Notes PMID:32138167 Approved no
Call Number GFZ @ kyba @ Serial 2844
Permanent link to this record
 

 
Author Atchoi, E.; Mitkus, M.; Rodríguez, A.
Title Is seabird light‐induced mortality explained by the visual system development? Type Journal Article
Year (down) 2020 Publication Conservation Science and Practice Abbreviated Journal Conservat Sci and Prac
Volume in press Issue Pages
Keywords Animals
Abstract Seabirds are impacted by coastal light pollution, leading to massive mortality events. Juveniles comprise the majority of affected individuals, while adults are only seldom grounded and reported in rescue programs. We propose a connection between visual system development of burrow nesting seabirds and the observed higher vulnerability to light pollution by a specific age group. We illustrate the need for multidisciplinary research to better understand and further mitigate light-induced mortality.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2578-4854 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2845
Permanent link to this record