|   | 
Details
   web
Records
Author Rebke, M.; Dierschke, V.; Weiner, C.N.; Aumüller, R.; Hill, K.; Hill, R.
Title Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions Type Journal Article
Year (down) 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 233 Issue Pages 220-227
Keywords Animals
Abstract A growing number of offshore wind farms have led to a tremendous increase in artificial lighting in the marine environment. This study disentangles the connection of light characteristics, which potentially influence the reaction of nocturnally migrating passerines to artificial illumination under different cloud cover conditions. In a spotlight experiment on a North Sea island, birds were exposed to combinations of light colour (red, yellow, green, blue, white), intensity (half, full) and blinking mode (intermittent, continuous) while measuring their number close to the light source with thermal imaging cameras.

We found that no light variant was constantly avoided by nocturnally migrating passerines crossing the sea. The number of birds did neither differ between observation periods with blinking light of different colours nor compared to darkness. While intensity did not influence the number attracted, birds were drawn more towards continuous than towards blinking illumination, when stars were not visible. Red continuous light was the only exception that did not differ from the blinking counterpart. Continuous green, blue and white light attracted significantly more birds than continuous red light in overcast situations.

Our results suggest that light sources offshore should be restricted to a minimum, but if lighting is needed, blinking light is to be preferred over continuous light, and if continuous light is required, red light should be applied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2255
Permanent link to this record
 

 
Author Murphy, B.A.
Title Circadian and circannual regulation in the horse: Internal timing in an elite athlete Type Journal Article
Year (down) 2019 Publication Journal of Equine Veterinary Science Abbreviated Journal Journal of Equine Veterinary Science
Volume Issue Pages
Keywords Animals
Abstract Biological rhythms evolved to provide temporal coordination across all tissues and organs and allow synchronisation of physiology with predictable environmental cycles. Most important of these are circadian and circannual rhythms, primarily regulated via photoperiod signals from the retina. Understanding the nature of physiological rhythms in horses is crucially important for equine management. Predominantly, we have removed them from exposure to their natural environmental stimuli; the seasonally changing photoperiod, continuous foraging and feeding activity, social herd interactions and the continuous low intensity exercise of a grassland dweller. These have been replaced in many cases with confined indoor housing, regimental feeding and exercise times, social isolation and exposure to lighting that is often erratic and does not come close to mimicking the spectral composition of sunlight. We have further altered seasonal timing cues through the use of artificial lighting programs that impact reproductive behaviour, breeding efficiency and the development of youngstock. Understanding how these new environmental cues (some stronger, some weaker) impact the internal physiology of the horse in the context of the natural endogenous rhythms that evolved over millennia, is key to helping to improve equine health, welfare and performance, now and into the future. This review provides an overview of the field, highlights the recent discoveries related to biological timing in horses and discusses the implications that these findings may have for the production and management of the elite equine athlete.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0737-0806 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2257
Permanent link to this record
 

 
Author Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A.
Title An asymptotic formula for skyglow modelling over a large territory Type Journal Article
Year (down) 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 485 Issue 2 Pages 2214-2224
Keywords Skyglow
Abstract An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2258
Permanent link to this record
 

 
Author Chakrabarti, N.
Title Sex and estrous cycle dependent changes in locomotor activity, anxiety and memory performance in aged mice after exposure of light at night Type Journal Article
Year (down) 2019 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume in press Issue Pages
Keywords Animals
Abstract Light-at-night (LAN) can affect mammalian behaviour. But, the effects of LAN on aged rodents remain undefined yet. In the present investigation, aged Swiss Albino mice, habituated in regular light-dark cycle, were exposed to bright-light-pulse (1-hr) at night on the day of study followed by experimentations for assessment of locomotor activities in the open field, anxiety in the elevated plus maze and short-term memory for novel object recognition (NOR) in the habituated field. Under without-bright-light exposure, (a) aged proestrous females showed greater locomotor activities and less anxiety than in aged diestrous females, (b) aged males showed locomotor activities and anxiety level similar to aged diestrous females and aged proestrous females respectively and (c) all animals failed to retain in object discrimination memory. LAN exposure exhibited the continual failure of such retention of memory while animals showed free and spontaneous exploration with thigmotactic behaviour having no object bias and/or phobia, but time stay in objects by animals altered variably among sexes and stages of estrous cycle. Overall, the LAN caused (a) diminution in locomotor activities, rise in anxiety and failure of memory for recognition of both familiar and novel objects in aged proestrous females, (b) hyperlocomotor activities and reduction in anxiety in both males and diestrous females with the failure of memory for recognition of novel objects only in aged males while diestrous females showed enhanced exploration time to both objects during NOR. Thus, nocturnal behaviour of aged mice varies with sex and estrous cycle and light acts differentially on them.
Address University of Calcutta, Department of Physiology, 92, APC Road, Kolkata, 700009, West Bengal, India. Electronic address: ncphysiolcu@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:30853396 Approved no
Call Number GFZ @ kyba @ Serial 2259
Permanent link to this record
 

 
Author Coulthard, E.; Norrey, J.; Shortall, C.; Harris, W.E.
Title Ecological traits predict population changes in moths Type Journal Article
Year (down) 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 233 Issue Pages 213-219
Keywords Animals
Abstract Understanding the ecological traits which predispose species to local or global extinction allows for more effective pre-emptive conservation management interventions. Insect population declines are a major facet of the global biodiversity crisis, yet even in Europe they remain poorly understood. Here we identify traits linked to population trends in ‘common and widespread’ UK moths. Population trend data from the Rothamsted Research Insect Survey spanning 40 years was subject to classification and regression models to identify common traits among species experiencing a significant change in occurrence. Our final model had an accuracy of 76% and managed to predict declining species on 90% of occasions, but was less successful with increasing species. By far the most powerful predictor associated for declines was moth wingspan with large species declining more frequently. Preference for woody or herbaceous larval food sources, nocturnal photoperiod activity, and richness of habitats occupied also proved to be significantly associated with decline. Our results suggest that ecological traits can be reliably used to predict declines in moths, and that this model could be used for Data Deficient species, of which there are many.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2260
Permanent link to this record