|
Records |
Links |
|
Author |
Wang, J.; Zhou, M.; Xu, X.; Roudini, S.; Sander, S.P.; Pongetti, T.J.; Miller, S.D.; Reid, J.S.; Hyer, E.; Spurr, R. |

|
|
Title |
Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS |
Type |
Journal Article |
|
Year  |
2020 |
Publication |
Remote Sensing of Environment |
Abbreviated Journal |
Remote Sensing of Environment |
|
|
Volume |
241 |
Issue |
|
Pages |
111727 |
|
|
Keywords |
Remote Sensing |
|
|
Abstract |
The launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Sumo-NPP satellite in 2011 ushered in a new era of using visible light and shortwave radiation at night to characterize aerosol and fire distributions from space. In order to exploit the full range of unprecedented observational capabilities of VIIRS, we have developed a nighttime shortwave radiative transfer model capability in the UNified and Linearized Radiative Transfer Model (UNL-VRTM). This capability is based on the use of additional source functions to treat illumination from the Moon, from fires, and from artificial lights. We have applied this model to address fundamental questions associated with the VIIRS sensing of aerosol and fire at night. Detailed description of model developments and validation (either directly with surface measurements of lunar spectra or indirectly through cross validation) are presented. Our analysis reveals that: (a) when convolution with the broad-range (500–900 nm) relative spectral response (RSR) function of the VIIRS Day-Night Band (DNB) is omitted, AOD retrieval from the DNB have uncertainties up to a factor of two in conditions with low or moderate AOD (<0.5 in mid-visible); (b) using a wavelength independent spectrum for the surface illumination source can lead to an AOD bias of −10% over surfaces illuminated by light-emitting diodes and fluorescent lamps, and −30% illuminated by high-pressure sodium lamps; and (c) a DNB-equivalent narrow band for AOD retrieval over the surfaces illuminated by the three types of bulbs studied in this paper is found to be centered at 585 nm at which the look-up table can be generated for AOD retrieval from DNB. Furthermore, while uncertainty in AOD retrievals from the DNB decreases as AOD increases, fire characterization can be affected by AOD; for a smoke-scenario AOD of 2.0, the DNB and SWIR (1.6 μm) radiances can be reduced by 50% depending on the fire area fraction and temperature within VIIRS pixel. DNB is overall more sensitive to smaller and cooler fires than SWIR and can be used to retrieve AOD over bright surfaces. Finally, three-dimensional (3D) radiative transfer effects and the non-collimated nature of most artificial light sources are neglected in this 1D radiative transfer (plane-parallel) model, resulting in possibly large uncertainties (e.g., the inability to reproduce side-illumination of clouds by city lights) that should be studied in future. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0034-4257 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2863 |
|
Permanent link to this record |
|
|
|
|
Author |
Bumgarner, J.R.; Walker, W.H. 2nd; Liu, J.A.; Walton, J.C.; Nelson, R.J. |

|
|
Title |
Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice |
Type |
Journal Article |
|
Year  |
2020 |
Publication |
Neuroscience |
Abbreviated Journal |
Neuroscience |
|
|
Volume |
in press |
Issue |
|
Pages |
|
|
|
Keywords |
Animals; Allodynia; Hyperalgesia; Light at Night; Neuroinflammation; Opioid; Pain |
|
|
Abstract |
The growing presence of artificial lighting across the globe presents a number of challenges to human and ecological health despite its societal benefits. Exposure to artificial light at night, a seemingly innocuous aspect of modern life, disrupts behavior and physiological functions. Specifically, light at night induces neuroinflammation, which is implicated in neuropathic and nociceptive pain states, including hyperalgesia and allodynia. Because of its influence on neuroinflammation, we investigated the effects of dim light at night exposure on pain responsiveness in male mice. In this study, mice exposed to four days of dim (5 lux) light at night exhibited cold hyperalgesia. Further, after 28 days of exposure, mice exhibited both cold hyperalgesia and mechanical allodynia. No heat/hot hyperalgesia was observed in this experiment. Altered nociception in mice exposed to dim light at night was concurrent with upregulated interleukin-6 and nerve growth factor mRNA expression in the medulla and elevated mu-opioid receptor mRNA expression in the periaqueductal gray region of the brain. The current results support the relationship between disrupted circadian rhythms and altered pain sensitivity. In summary, we observed that dim light at night induces cold hyperalgesia and mechanical allodynia, potentially through elevated central neuroinflammation and dysregulation of the endogenous opioid system. |
|
|
Address |
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506 United States |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0306-4522 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:32201267 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2864 |
|
Permanent link to this record |
|
|
|
|
Author |
Andreatta, G.; Tessmar-Raible, K. |

|
|
Title |
The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks |
Type |
Journal Article |
|
Year  |
2020 |
Publication |
Journal of Molecular Biology |
Abbreviated Journal |
J Mol Biol |
|
|
Volume |
in press |
Issue |
|
Pages |
|
|
|
Keywords |
Review; Animals; Hormones; Lunar rhythms; Physiology; Proteome; Transcriptome |
|
|
Abstract |
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon. |
|
|
Address |
Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna; Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna. Electronic address: kristin.tessmar@mfpl.ac.at |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-2836 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:32198116 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2865 |
|
Permanent link to this record |
|
|
|
|
Author |
Crespo Cuaresma, J.; Danylo, O.; Fritz, S.; Hofer, M.; Kharas, H.; Laso Bayas, J.C. |

|
|
Title |
What do we know about poverty in North Korea? |
Type |
Journal Article |
|
Year  |
2020 |
Publication |
Palgrave Communications |
Abbreviated Journal |
Palgrave Commun |
|
|
Volume |
6 |
Issue |
1 |
Pages |
in press |
|
|
Keywords |
Remote Sensing |
|
|
Abstract |
Reliable quantitative information on the North Korean economy is extremely scarce. In particular, reliable income per capita and poverty figures for the country are not available. In this contribution, we provide for the first time estimates of absolute poverty rates in North Korean subnational regions based on the combination of innovative remote-sensed night-time light intensity data (monthly information for built areas) with estimated income distributions. Our results, which are robust to the use of different methods to approximate the income distribution in the country, indicate that the share of persons living in extreme poverty in North Korea may be larger than previously thought. We estimate a poverty rate for the country of around 60% in 2018 and a high volatility in the dynamics of income at the national level in North Korea for the period 2012–2018. Income per capita estimates tend to decline significantly from 2012 to 2015 and present a recovery since 2016. The subnational estimates of income and poverty reveal a change in relative dynamics since the second half of the 2012–2018 period. The first part of the period is dominated by divergent dynamics in income across regions, while the second half reveals convergence in regional income. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2055-1045 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2866 |
|
Permanent link to this record |
|
|
|
|
Author |
Gomes, D.G.E. |

|
|
Title |
Orb-weaving spiders are fewer but larger and catch more prey in lit bridge panels from a natural artificial light experiment |
Type |
Journal Article |
|
Year  |
2020 |
Publication |
PeerJ |
Abbreviated Journal |
|
|
|
Volume |
8 |
Issue |
|
Pages |
e8808 |
|
|
Keywords |
Animals |
|
|
Abstract |
Artificial light at night is rapidly changing the sensory world. While evidence is accumulating for how insects are affected, it is not clear how this impacts higher trophic levels that feed on insect communities. Spiders are important insect predators that have recently been shown to have increased abundance in urban areas, but have shown mixed responses to artificial light. On a single bridge with alternating artificially lit and unlit sections, I measured changes in the orb-weaving spider Larinioides sclopetarius (Araneidae) web abundance, web-building behavior, prey-capture, and body condition. In artificially lit conditions, spiders caught more prey with smaller webs, and had higher body conditions. However, there were fewer spiders with active webs in those lit areas. This suggests that either spiders were not taking advantage of an ecological insect trap, perhaps due to an increased risk of becoming prey themselves, or were satiated, and thus not as active within these habitats. The results from this natural experiment may have important consequences for both insects and spiders in urban areas under artificial lighting conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2167-8359 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2867 |
|
Permanent link to this record |