|   | 
Details
   web
Records
Author Sella, K.N.; Salmon, M.; Witherington, B.E.
Title Filtered Streetlights Attract Hatchling Marine Turtles Type Journal Article
Year 2006 Publication Chelonian Conservation and Biology Abbreviated Journal Chelonian Conservation and Biology
Volume 5 Issue 2 Pages 255-261
Keywords Reptilia; Testudines; Cheloniidae; Loggerhead turtle; turtles; marine turtles; reptiles; Caretta caretta; Chelonia mydas; hatchlings; artificial lighting; light “trapping”; orientation; seafinding; Florida
Abstract (up) On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those <&#8201;530 nm; those <&#8201;570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1071-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 78
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S.
Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
Year 2006 Publication Astrobiology Abbreviated Journal Astrobiology
Volume 6 Issue 4 Pages 668-675
Keywords Plants
Abstract (up) Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.
Address Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-8070 ISBN Medium
Area Expedition Conference
Notes PMID:16916290 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1198
Permanent link to this record
 

 
Author Takemura, A.; Ueda, S.; Hiyakawa, N.; Nikaido, Y.
Title A direct influence of moonlight intensity on changes in melatonin production by cultured pineal glands of the golden rabbitfish, Siganus guttatus Type Journal Article
Year 2006 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume 40 Issue 3 Pages 236-241
Keywords Animals; Circadian Rhythm; *Light; Melatonin/biosynthesis/*secretion; *Moon; Organ Culture Techniques; Perciformes/*physiology; Pineal Gland/physiology/*radiation effects
Abstract (up) Rabbitfish are a restricted lunar-synchronized spawner that spawns around a species-specific lunar phase. It is not known how the fish perceive changes in cues from the moon. One possible explanation is that rabbitfish utilize changes in moonlight intensity to establish synchrony. The purpose of the present study was to examine whether or not the pineal gland of the golden rabbitfish can directly perceive changes in moonlight intensity. Isolated pineal glands were statically cultured under natural or artificial light conditions and melatonin secreted into the culture medium was measured using a time-resolved fluoroimmunoassay. Under an artificial light/dark cycle, melatonin secretion significantly increased during the dark phase. Under continuous light conditions, melatonin secretion was suppressed, while culture under continuous dark conditions seemed to duplicate melatonin secretion corresponding to the light/dark cycle in which the fish were acclimated. When cultured pineal glands were kept under natural light conditions on the dates of the full and the new moon, small amounts of melatonin were secreted at night. Moreover, exposure of cultured pineal glands to artificial and natural light conditions resulted in a significant decrease of melatonin secretion within 2 hr. These results suggest that the isolated pineal gland of golden rabbitfish responds to environmental light cycles and that 'brightness' of the night moon has an influence on melatonin secretion from the isolated pineal gland.
Address Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan. tilapia@lab.u-ryukyu.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes PMID:16499560 Approved no
Call Number IDA @ john @ Serial 70
Permanent link to this record
 

 
Author Johnsen, S.; Kelber, A.; Warrant, E.; Sweeney, A.M.; Widder, E.A.; Lee, R.L.J.; Hernandez-Andres, J.
Title Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor Type Journal Article
Year 2006 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 209 Issue Pt 5 Pages 789-800
Keywords Animals; Color Perception/*physiology; Ecosystem; *Light; Moths/*physiology
Abstract (up) Recent studies have shown that certain nocturnal insect and vertebrate species have true color vision under nocturnal illumination. Thus, their vision is potentially affected by changes in the spectral quality of twilight and nocturnal illumination, due to the presence or absence of the moon, artificial light pollution and other factors. We investigated this in the following manner. First we measured the spectral irradiance (from 300 to 700 nm) during the day, sunset, twilight, full moon, new moon, and in the presence of high levels of light pollution. The spectra were then converted to both human-based chromaticities and to relative quantum catches for the nocturnal hawkmoth Deilephila elpenor, which has color vision. The reflectance spectra of various flowers and leaves and the red hindwings of D. elpenor were also converted to chromaticities and relative quantum catches. Finally, the achromatic and chromatic contrasts (with and without von Kries color constancy) of the flowers and hindwings against a leaf background were determined under the various lighting environments. The twilight and nocturnal illuminants were substantially different from each other, resulting in significantly different contrasts. The addition of von Kries color constancy significantly reduced the effect of changing illuminants on chromatic contrast, suggesting that, even in this light-limited environment, the ability of color vision to provide reliable signals under changing illuminants may offset the concurrent threefold decrease in sensitivity and spatial resolution. Given this, color vision may be more common in crepuscular and nocturnal species than previously considered.
Address Biology Department, Duke University, Durham, NC 27708, USA. sjohnsen@duke.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:16481568 Approved no
Call Number LoNNe @ kagoburian @ Serial 604
Permanent link to this record
 

 
Author Shirkey, R. C.
Title A Model for Nighttime Urban Illumination Type Journal Article
Year 2006 Publication Abbreviated Journal
Volume Issue Pages
Keywords Skyglow
Abstract (up) The Army increasingly relies on night operations to accomplish its objectives. These night operations frequently require using Night Vision Goggles and other light-sensitive devices which are strongly affected by ambient lighting, a large component of which is urban. An urban illumination model is proposed for use in tactical decision aids and wargames which would allow for more accurate prediction of target acquisition ranges and increased realism in simulations. This model will build on previous research that predicts broadband brightness as a function of population and distance from the city center. Since city population and aerosols affect light distributions, the model is being extended and generalized for multiple city types and natural and man-made aerosols. An overview of the model along with future improvements will be presented.
Address
Corporate Author ARMY RESEARCH LAB WHITE SANDS MISSILE RANGE NM COMPUTATIONAL AND INFORMATION SCIENCE DIRECTORATE Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADA497505 Approved no
Call Number GFZ @ kyba @ Serial 1977
Permanent link to this record