|   | 
Details
   web
Records
Author Moser, M.; Schaumberger, K.; Schernhammer, E.; Stevens, R.G.
Title Cancer and rhythm Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue (down) 4 Pages 483-487
Keywords Human Health; Animals; Breast Neoplasms/etiology/physiopathology/prevention & control; Chronobiology Phenomena; Chronotherapy; *Circadian Rhythm; Humans; Life Style; Melatonin/metabolism; Neoplasms/etiology/*physiopathology/prevention & control/therapy; Risk Factors
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596301 Approved no
Call Number LoNNe @ kagoburian @ Serial 786
Permanent link to this record
 

 
Author Reiter, R.J.; Gultekin, F.; Manchester, L.C.; Tan, D.-X.
Title Light pollution, melatonin suppression and cancer growth Type Journal Article
Year 2006 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume 40 Issue (down) 4 Pages 357-358
Keywords Human Health; Animals; Cell Division; Cell Line, Tumor; Humans; *Light; Melatonin/*antagonists & inhibitors; Neoplasms/*pathology; Rats
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes PMID:16635025 Approved no
Call Number LoNNe @ kagoburian @ Serial 798
Permanent link to this record
 

 
Author Stevens, R.G.
Title Artificial lighting in the industrialized world: circadian disruption and breast cancer Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue (down) 4 Pages 501-507
Keywords Human Health; Alcohol Drinking/adverse effects; Animals; Breast Neoplasms/*etiology; Chronobiology Disorders/*etiology/physiopathology; Circadian Rhythm; Developing Countries; Female; Humans; Lighting/*adverse effects; Melatonin/metabolism; Risk Factors; Suprachiasmatic Nucleus/physiopathology
Abstract Breast cancer risk is high in industrialized societies, and increases as developing countries become more Westernized. The reasons are poorly understood. One possibility is circadian disruption from aspects of modern life, in particular the increasing use of electric power to light the night, and provide a sun-free environment during the day inside buildings. Circadian disruption could lead to alterations in melatonin production and in changing the molecular time of the circadian clock in the suprachiasmatic nuclei (SCN). There is evidence in humans that the endogenous melatonin rhythm is stronger for persons in a bright-day environment than in a dim-day environment; and the light intensity necessary to suppress melatonin at night continues to decline as new experiments are done. Melatonin suppression can increase breast tumorigenesis in experimental animals, and altering the endogenous clock mechanism may have downstream effects on cell cycle regulatory genes pertinent to breast tissue development and susceptibility. Therefore, maintenance of a solar day-aligned circadian rhythm in endogenous melatonin and in clock gene expression by exposure to a bright day and a dark night, may be a worthy goal. However, exogenous administration of melatonin in an attempt to achieve this goal may have an untoward effect given that pharmacologic dosing with melatonin has been shown to phase shift humans depending on the time of day it's given. Exogenous melatonin may therefore contribute to circadian disruption rather than alleviate it.
Address University of Connecticut Health Center, Farmington, CT 06030-6325, USA. bugs@neuron.uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596303 Approved no
Call Number LoNNe @ kagoburian @ Serial 818
Permanent link to this record
 

 
Author Powe, N.A; Willis, K.G.; Garrod, G.D.
Title Difficulties in Valuing Street Light Improvement: Trust, Surprise and Bound Effects Type Journal Article
Year 2006 Publication Applied Economics Abbreviated Journal
Volume 38 Issue (down) 4 Pages 371–381
Keywords Economics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 1055
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S.
Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
Year 2006 Publication Astrobiology Abbreviated Journal Astrobiology
Volume 6 Issue (down) 4 Pages 668-675
Keywords Plants
Abstract Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.
Address Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-8070 ISBN Medium
Area Expedition Conference
Notes PMID:16916290 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1198
Permanent link to this record