toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Baker, B.J.; Richardson, J.M.L. url  doi
openurl 
  Title The effect of artificial light on male breeding-season behaviour in green frogs,Rana clamitans melanota Type Journal Article
  Year 2006 Publication Canadian Journal of Zoology Abbreviated Journal Can. J. Zool.  
  Volume 84 Issue 10 Pages 1528-1532  
  Keywords animals; amphibians; frogs; green frogs; Rana clamitans melanota; Reproduction; reproductive strategies  
  Abstract Artificial night lighting (or ecological light pollution) is only now gaining attention as a source of long-term effects on the ecology of both diurnal and nocturnal animals. The limited data available clearly indicate that artificial light can affect physiology and behaviour of animals, leading to ecological consequences at the population, community, and ecosystem levels. Aquatic ecosystems may be particularly vulnerable to such effects, and nocturnally breeding animals such as frogs may be especially affected. To address this potential, we quantify the effects of artificial light on calling and movement behaviour in a rural population of male green frogs (Rana clamitans melanota (Rafinesque, 1820)) during the breeding season. When exposed to artificial light, frogs produced fewer advertisement calls and moved more frequently than under ambient light conditions. Results clearly demonstrate that male green frog behaviour is affected by the presence of artificial light in a manner that has the potential to reduce recruitment rates and thus affect population dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4301 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 71  
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S. url  doi
openurl 
  Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
  Year 2006 Publication Astrobiology Abbreviated Journal Astrobiology  
  Volume 6 Issue 4 Pages 668-675  
  Keywords Plants  
  Abstract Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.  
  Address Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16916290 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1198  
Permanent link to this record
 

 
Author Muheim, R.; Phillips, J.B.; Akesson, S. url  doi
openurl 
  Title Polarized light cues underlie compass calibration in migratory songbirds Type Journal Article
  Year 2006 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 313 Issue 5788 Pages 837-839  
  Keywords Alaska; *Animal Migration; Animals; Calibration; Cues; *Flight, Animal; Geography; *Light; Magnetics; *Orientation; Seasons; Sparrows/*physiology; Sunlight  
  Abstract Migratory songbirds use the geomagnetic field, stars, the Sun, and polarized light patterns to determine their migratory direction. To prevent navigational errors, it is necessary to calibrate all of these compass systems to a common reference. We show that migratory Savannah sparrows use polarized light cues from the region of sky near the horizon to recalibrate the magnetic compass at both sunrise and sunset. We suggest that skylight polarization patterns are used to derive an absolute (i.e., geographic) directional system that provides the primary calibration reference for all of the compasses of migratory songbirds.  
  Address Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. rmuheim@vt.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16902138 Approved no  
  Call Number IDA @ john @ Serial 243  
Permanent link to this record
 

 
Author Figueiro, M.G.; Rea, M.S.; Bullough, J.D. url  doi
openurl 
  Title Does architectural lighting contribute to breast cancer? Type Journal Article
  Year 2006 Publication Journal of Carcinogenesis Abbreviated Journal J Carcinog  
  Volume 5 Issue Pages 20  
  Keywords Human Health  
  Abstract OBJECTIVES: There is a growing interest in the role that light plays on nocturnal melatonin production and, perhaps thereby, the incidence of breast cancer in modern societies. The direct causal relationships in this logical chain have not, however, been fully established and the weakest link is an inability to quantitatively specify architectural lighting as a stimulus for the circadian system. The purpose of the present paper is to draw attention to this weakness. DATA SOURCES AND EXTRACTION: We reviewed the literature on the relationship between melatonin, light at night, and cancer risk in humans and tumor growth in animals. More specifically, we focused on the impact of light on nocturnal melatonin suppression in humans and on the applicability of these data to women in real-life situations. Photometric measurement data from the lighted environment of women at work and at home is also reported. DATA SYNTHESIS: The literature review and measurement data demonstrate that more quantitative knowledge is needed about circadian light exposures actually experienced by women and girls in modern societies. CONCLUSION: Without such quantitative knowledge, limited insights can be gained about the causal relationship between melatonin and the etiology of breast cancer from epidemiological studies and from parametric studies using animal models.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street Troy, NY 12180 USA. figuem@rpi.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-3163 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16901343; PMCID:PMC1557490 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 746  
Permanent link to this record
 

 
Author Srinivasan, V.; Smits, M.; Spence, W.; Lowe, A.D.; Kayumov, L.; Pandi-Perumal, S.R.; Parry, B.; Cardinali, D.P. url  doi
openurl 
  Title Melatonin in mood disorders Type Journal Article
  Year 2006 Publication The World Journal of Biological Psychiatry : the Official Journal of the World Federation of Societies of Biological Psychiatry Abbreviated Journal World J Biol Psychiatry  
  Volume 7 Issue 3 Pages 138-151  
  Keywords Human Health; Antidepressive Agents/therapeutic use; Biological Markers/blood; Bipolar Disorder/diagnosis/drug therapy/*physiopathology; Circadian Rhythm/drug effects/physiology; Depressive Disorder/diagnosis/drug therapy/*physiopathology; Depressive Disorder, Major/diagnosis/drug therapy/physiopathology; Humans; Melatonin/*blood/therapeutic use; Phototherapy; Seasonal Affective Disorder/diagnosis/physiopathology; Sleep Disorders, Circadian Rhythm/diagnosis/drug therapy/physiopathology; Treatment Outcome  
  Abstract The cyclic nature of depressive illness, the diurnal variations in its symptomatology and the existence of disturbed sleep-wake and core body temperature rhythms, all suggest that dysfunction of the circadian time keeping system may underlie the pathophysiology of depression. As a rhythm-regulating factor, the study of melatonin in various depressive illnesses has gained attention. Melatonin can be both a 'state marker' and a 'trait marker' of mood disorders. Measurement of melatonin either in saliva or plasma, or of its main metabolite 6-sulfatoxymelatonin in urine, have documented significant alterations in melatonin secretion in depressive patients during the acute phase of illness. Not only the levels but also the timing of melatonin secretion is altered in bipolar affective disorder and in patients with seasonal affective disorder (SAD). A phase delay of melatonin secretion takes place in SAD, as well as changes in the onset, duration and offset of melatonin secretion. Bright light treatment, that suppresses melatonin production, is effective in treating bipolar affective disorder and SAD, winter type. This review discusses the role of melatonin in the pathophysiology of bipolar disorder and SAD.  
  Address Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1562-2975 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16861139 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: