|   | 
Details
   web
Records
Author Bedrosian, T.A. (ed)
Title Circadian Disruption by Light at Night: Implications for Mood Type Book Whole
Year 2013 Publication Abbreviated Journal (up)
Volume Issue Pages
Keywords circadian disruption; sleep; light at night; melanopsin; mood; mental health; Mood Disorders; epigenetics; red light
Abstract Life on Earth has adapted to a consistent 24-h solar cycle. Circadian rhythms in physiology and behavior remain synchronized to the environment using light as the most potent entraining cue. During the past century, however, the widespread adoption of electric light has led to `round-the-clock’ societies. Instead of aligning with the environment, individuals follow artificial and often erratic light cycles created by social and work schedules. In particular, exposure to artificial light at night (LAN), termed “light pollution”, has become pervasive over the past 100 years. Virtually every individual living in the U.S. and Europe experiences this aberrant light exposure, and moreover about 20% of the population performs shift work. LAN may disrupt physiological timekeeping, leading to dysregulation of internal processes and misalignment between behavior and the environment. Recent evidence suggests that individuals exposed to excessive LAN, such as night shift workers, have increased risk for depressive disorders, but the biological mechanism remains unspecified. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) project light information to (1) the suprachiasmatic nucleus (SCN) in the hypothalamus, regulating circadian rhythms, and (2) to limbic regions, putatively regulating mood. Thus, LAN has the potential to affect both circadian timekeeping and mood. In this dissertation, I present evidence from rodent studies supporting the novel hypothesis that night-time exposure to light disrupts circadian organization and contributes to depressed mood. First, I consider the physiological and behavioral consequences associated with unnatural exposure to LAN. The effects of LAN on circadian output are considered in terms of locomotor activity, the diurnal cortisol rhythm, and diurnal clock protein expression in the brain in Chapter 2. The influence of LAN on behavior and brain plasticity is discussed, with particular focus on depressive-like behavior (Chapter 3) and effects of SSRI treatment (Chapter 4). Effects of LAN on structural plasticity and gene expression in the brain are described, with emphasis on potential correlates of the depressive-like behavior observed under LAN in Chapter 5. Given the prevalence of LAN exposure and its importance, strategies for reversing the effects are offered. Specifically, eliminating LAN quickly reverses behavioral and physiological effects of exposure as described in Chapter 5. In Chapter 6 I report that administration of a pharmacological cytokine inhibitor prevents depressive-like behaviors in LAN, implicating brain inflammation in the behavioral effect. Finally, I demonstrate in Chapter 7 that exposure to red wavelength LAN reduces the effects on brain and behavior, suggesting that LAN acts through specific retinal pathways involving melanopsin. Taken together, these studies demonstrate the consequences of LAN, but also outline potential avenues for prevention or intervention.
Address Department of Neuroscience and The Institute for Behavioral Medicine Research The Ohio State University
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Bedrosian, T.A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 323
Permanent link to this record
 

 
Author Fuller, G. (ed)
Title The Night Shift: Lighting and Nocturnal Strepsirrhine Care in Zoos Type Book Whole
Year 2013 Publication Abbreviated Journal (up)
Volume Issue Pages
Keywords zoos; light at night; circadian disruption; strepsirrhines; primates; lorises; pottos; lighting design
Abstract Over billions of years of evolution, light from the sun, moon, and stars has provided

organisms with reliable information about the passage of time. Photic cues entrain

the circadian system, allowing animals to perform behaviors critical for survival and

reproduction at optimal times. Modern artificial lighting has drastically altered

environmental light cues. Evidence is accumulating that exposure to light at night

(particularly blue wavelengths) from computer screens, urban light pollution, or as

an occupational hazard of night-shift work has major implications for human health.

Nocturnal animals are the shift workers of zoos; they are generally housed on

reversed light cycles so that daytime visitors can observe their active behaviors. As a

result, they are exposed to artificial light throughout their subjective night. The goal

of this investigation was to examine critically the care of nocturnal strepsirrhine

primates in North American zoos, focusing on lorises (Loris and Nycticebus spp.) and pottos (Perodicticus potto). The general hypothesis was that exhibit lighting design affects activity patterns and circadian physiology in nocturnal strepsirrhines. The

first specific aim was to assess the status of these populations. A multi-institutional husbandry survey revealed little consensus among zoos in lighting design, with both red and blue light commonly used for nocturnal illumination. A review of medical records also revealed high rates of neonate mortality. The second aim was to

develop methods for measuring the effects of exhibit lighting on behavior and

health. The use of actigraphy for automated activity monitoring was explored.

Methods were also developed for measuring salivary melatonin and cortisol as

indicators of circadian disruption. Finally, a multi-institutional study was conducted

comparing behavioral and endocrine responses to red and blue dark phase lighting.

These results showed greater activity levels in strepsirrhines housed under red light than blue. Salivary melatonin concentrations in pottos suggested that blue light

suppressed nocturnal melatonin production at higher intensities, but evidence for

circadian disruption was equivocal. These results add to the growing body of

evidence on the detrimental effects of blue light at night and are a step towards

empirical recommendations for nocturnal lighting design in zoos.
Address Department of Biology, Case Western Reserve University
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Fuller, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 327
Permanent link to this record
 

 
Author Bolshakov, C.V.; Bulyuk, V.N.; Sinelschikova, A.Y.; Vorotkov, M.V.
Title Influence of the vertical light beam on numbers and flight trajectories of night-migrating songbirds Type Journal Article
Year 2013 Publication Avian Ecol. Behav. Abbreviated Journal (up)
Volume 24 Issue Pages 35–49
Keywords Animals; nocturnal migration; light pollution; numbers; flight track; extrinsic factors
Abstract In this paper we analyse the data obtained in the automatic regime by the Optical Electronic Device (OED, Vorotkov et al. 2009; Bolshakov et al. 2010) for autumn nocturnal passage of passerines on the Courish Spit on the Baltic Sea and estimate: (1) numbers aloft under differ- ent types of wind (following wind, opposing wind and calm conditions); (2) flight trajectories in the 5° cone of white light. We found that under natural nocturnal illumination conditions, the vertical cone of white light impacts the detectable numbers aloft and disturbs straight flight trajectories. The OED data obtained throughout the night suggest, after correction for ground speed and the mean flight altitude, the actual number of birds in the light cone peaks at calm conditions, is halved under following winds which are optimal for passage and is 21 times lower under unfavourable headwinds. It is assumed that high numbers in the light cone under calm conditions is an artefact of bird attraction by light and their concentration around the searchlights. The OED data obtained for midnight ±1 hour, flying migrants respond to the vertical light cone under all types of wind conditions by altering their straight flight trajec- tories. However, this response is most apparent in still air conditions. The proportion of birds that change their flight track reaches 43%. We assume that under such conditions some birds are not only attracted to the illuminated zone at low altitudes, but, besides slowing down their ground speed, change their trajectories to the degree of flying in circles. To determine combi- nations of factors and to test for their possible impact on the probability of response to light, we used a binary logistic regression. The presence of birds with straight vs. curved tracks was used as the dependent variable. Final logistic models obtained for midnight ±1 hour for calm conditions and headwinds, suggest that occurrence probability of songbirds with curvilinear flight tracks is higher for small birds, when no or just a small part of Moon disk is visible and under high air humidity. Under headwinds the probability of occurrence of birds flying curvi- linear tracks is also higher under overcast. For following winds, the probability of occurrence birds flying curvilinearly was higher when many small birds were aloft, when air humidity was high and when wind was not strictly following. Unlike other wind situations, this model did not include the size of visible part of the Moon disk as a significant factor. The increase of occurrence of curvilinear flight tracks through the light beam when winds were not exactly following was probably caused by the problems with compensating the lateral component of tailwinds under high velocities, especially by small birds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 378
Permanent link to this record
 

 
Author Le Tallec, T.; Perret, M.; Théry, M.
Title Light Pollution Modifies the Expression of Daily Rhythms and Behavior Patterns in a Nocturnal Primate Type Journal Article
Year 2013 Publication PLoS ONE Abbreviated Journal (up)
Volume 8 Issue 11 Pages e79250
Keywords Animals
Abstract Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14th night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 380
Permanent link to this record
 

 
Author Nowinszky, L.
Title Light-trap Catch of Harmful Microlepidoptera Species in Connection with Polarized Moonlight and Collecting Distance Type Journal Article
Year 2013 Publication Journal of Advanced Laboratory Research in Biology Abbreviated Journal (up)
Volume 4 Issue 4 Pages 108-117
Keywords Animals
Abstract The paper deals with light-trap catch of 25 Microlepidoptera species depending on the polarized moonlight and

collecting distance. The catching data were chosen from the 27 stations of the Hungarian National Light-trap Network and

from the years between 1959 and 1961. Relative catch values were calculated from the catching data per stations and

swarming. They are ranged and averaged in the phase angle divisions. The catching peak of ten species is in First Quarter,

another ten species have the peak in the First Quarter and Last one, and only in two cases the peak is in Last Quarter. Then

there is the maximum ratio of polarized moonlight. Catching peak of only three species is in connection with the collecting

distance when is the greatest of collection distance.

Keywords: Microlepidoptera, light-trap moon phases, polarized moonlight, catching distance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 381
Permanent link to this record