toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Picchi, M.S.; Avolio, L.; Azzani, L.; Brombin, O.; Camerini, G. url  doi
openurl 
  Title Fireflies and land use in an urban landscape: the case of Luciola italica L. (Coleoptera: Lampyridae) in the city of Turin Type Journal Article
  Year 2013 Publication Journal of Insect Conservation Abbreviated Journal (up) J Insect Conserv  
  Volume 17 Issue 4 Pages 797-805  
  Keywords Turin; insects; Coleoptera Lampyridae; Luciola italica; Urban environment; Fireflies; Light pollution; Ecological corridors; Green areas; Po River; Italy  
  Abstract Research was carried out in the city of Turin (Northern Italy) in order to assess the suitability of the urban environment for fireflies.The study started in 2007 with an artistic and scientific project promoted by Parco Arte Vivente (PAV—Park of living art). Citizens joining the project recorded 18 areas where they could observe fireflies, which were identified as Luciola italica L. (Coleoptera Lampyridae). All of the 18 areas recorded by citizens were then visited during the summer of 2009 and the abundance of L. italica was estimated using transects. In 12 sites the presence of the firefly was confirmed. The habitat structures of L. italica were woods interspersed with clearings in the urban districts in the hills, and parks along rivers in the lower and more populated part of the city. In sites where fireflies were observed, the level of illuminance measured was significantly lower than in areas where L. italica was absent. The analysis of the landscape around the study areas showed a negative correlation between the extent of urbanization and fireflies abundance. Survival of L. italica populations in the urban area of Turin is influenced by the extent of green areas and the level of artificial illumination. Parks lying among rivers preserve a level of darkness suitable for fireflies and are connected by woody strips growing along the banks of rivers, that probably function as ecological corridors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1366-638X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 108  
Permanent link to this record
 

 
Author Bedrosian, T.A.; Vaughn, C.A.; Galan, A.; Daye, G.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Nocturnal light exposure impairs affective responses in a wavelength-dependent manner Type Journal Article
  Year 2013 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal (up) J Neurosci  
  Volume 33 Issue 32 Pages 13081-13087  
  Keywords Analysis of Variance; Animals; Circadian Rhythm/*physiology; Cricetinae; Dose-Response Relationship, Radiation; Female; Food Deprivation/physiology; Food Preferences/physiology/radiation effects; Fourier Analysis; Gene Expression Regulation/radiation effects; Hippocampus/pathology/radiation effects; Immobility Response, Tonic/radiation effects; Light/*adverse effects; Mood Disorders/*etiology/pathology; Motor Activity/physiology/radiation effects; Phodopus; Proto-Oncogene Proteins c-fos/metabolism; Social Behavior; Suprachiasmatic Nucleus/metabolism; Time Factors  
  Abstract Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.  
  Address Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA. Bedrosian.2@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0270-6474 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23926261 Approved no  
  Call Number IDA @ john @ Serial 27  
Permanent link to this record
 

 
Author Ruger, M.; St Hilaire, M.A.; Brainard, G.C.; Khalsa, S.-B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. url  doi
openurl 
  Title Human phase response curve to a single 6.5 h pulse of short-wavelength light Type Journal Article
  Year 2013 Publication The Journal of Physiology Abbreviated Journal (up) J Physiol  
  Volume 591 Issue Pt 1 Pages 353-363  
  Keywords Adolescent; Adult; Body Temperature; Circadian Rhythm/*physiology; Female; Humans; *Light; Male; Melatonin/physiology; Young Adult; blue light; melatonin; photic response; whort-wavelength  
  Abstract The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 muW cm(-2), 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of -2.6 h and 1.3 h, respectively. The 480 nm PRC induced approximately 75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.  
  Address Circadian Physiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. mrueger@rics.bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23090946; PMCID:PMC3630790 Approved no  
  Call Number IDA @ john @ Serial 239  
Permanent link to this record
 

 
Author Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Gotz, T.; Krebs, J.; Cajochen, C. url  doi
openurl 
  Title Acute exposure to evening blue-enriched light impacts on human sleep Type Journal Article
  Year 2013 Publication Journal of Sleep Research Abbreviated Journal (up) J Sleep Res  
  Volume 22 Issue 5 Pages 573-580  
  Keywords Human Health  
  Abstract Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liege, Liege, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23509952 Approved no  
  Call Number GFZ @ kyba @ Serial 2201  
Permanent link to this record
 

 
Author Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. url  doi
openurl 
  Title Suomi NPP VIIRS day-night band on-orbit performance: VIIRS DAY-NIGHT BAND PERFORMANCE Type Journal Article
  Year 2013 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal (up) J. Geophys. Res. Atmos.  
  Volume 118 Issue 22 Pages 12,705-12,718  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169897X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 956  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: