|   | 
Details
   web
Records
Author Vignoli, L.; Luiselli, L.
Title Better in the dark: two Mediterranean amphibians synchronize reproduction with moonlit nights Type Journal Article
Year 2013 Publication Web Ecology Abbreviated Journal Web Ecol.
Volume 13 Issue 1 Pages 1-11
Keywords animals; amphibians; Hyla intermedia; Rana dalmatina; *Reproduction; reproductive strategies; Moon; moon phase; moonlight
Abstract (up) In Amphibians, both positive and negative correlations between activity and full moon phase have been observed. In this study, we present data for two anuran species (Hyla intermedia and Rana dalmatina) studied in a hilly Mediterranean area of central Italy. We analysed, in a two-year survey, the relationships between the number of egg clutches laid each night and the moon phases by means of circular statistics. Moreover, the studied species exhibited clear oviposition site selection behaviour influenced, at least in H. intermedia, by moon phases. We observed the occurrence of an avoidance effect by amphibians for oviposition and specific egg-laying behaviour during moon phases around the full moon. This apparent lunar phobia was evident in both species when yearly data were pooled. On the other hand, while this pattern continued to be also evident in H. intermedia when single years were considered, in R. dalmatina it stood just in one year of study. Nonetheless, during cloudy nights, when moonlight arriving on the ground was low, the frogs' behaviour was similar to that observed in new moon phases. We interpreted the observed pattern as an anti-predatory strategy. Overall, comparisons between our own study and previous research suggest that there was insufficient evidence to establish any unequivocal patterns and that further research in this regard is needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1399-1183 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 80
Permanent link to this record
 

 
Author Kuechly, H.; Kyba, C.; Hölker, F.
Title Woher kommt das Licht? Räumliche Betrachtung der Lichtverschmutzung Type Journal Article
Year 2013 Publication In: Held, M., Hölker, F. & Jessel, B. (2013) Schutz der Nacht – Lichtverschmutzung, Biodiversität und Nachtlandschaft. – BfN-Skripten Abbreviated Journal
Volume 336 Issue Pages 39-42
Keywords Remote Sensing
Abstract (up) In der Nacht ist die künstliche Beleuchtung eines der deutlichsten Kennzeichen für menschliche Aktivität auf der Erde. Wie bei vielen anderen anthropogenen Umweltveränderungen sind auch bei der künstlichen Beleuchtung die unmittelbaren Vorteile weit offensichtlicher als ihre unerwünschten Nebenwirkungen. Auch wenn über ein Drittel der Menschen in Deutschland die Milchstraße noch nie mit eigenen Augen gesehen hat (Emnid & PM Magazin 2002), sind sich nur wenige der Nachteile der künstlichen Beleuchtung bewusst. Daher verwundert es nicht, dass trotz energieeffizienterer Technologien die Kosten für die künstliche Beleuchtung nicht zurückgegangen sind–vielmehr werden heute immer mehr Straßen und Wege, Gärten und Gebäude beleuchtet.

Aber woher kommt das Licht genau? Lichtquellen und Lichtintensitäten, die Verteilung und die zeitliche Veränderung von Lichtemissionen lassen sich sehr gut mittels räumlicher Datenerhebung identifizieren, darstellen und analysieren. Dieser Beitrag gibt einen kurzen Überblick über die Verfahren und diskutiert Möglichkeiten zur Quantifizierung von Lichtverschmutzung.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 898
Permanent link to this record
 

 
Author Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages e56563
Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract (up) In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record
 

 
Author Li, X.; Chen, X.; Zhao, Y.; Xu, J.; Chen, F.; Li, H.
Title Automatic intercalibration of night-time light imagery using robust regression Type Journal Article
Year 2013 Publication Remote Sensing Letters Abbreviated Journal Remote Sensing Letters
Volume 4 Issue 1 Pages 45-54
Keywords remote sensing; light at night
Abstract (up) In remote-sensing community, radiometric calibration of night-time light images has long been a problem, hindering change detection of images in different dates. Currently, an intercalibration model is regarded as the unique solution for the problem, but prior knowledge is needed to extract reference pixels with stable lights, which are hard to obtain in most of the applications. This study proposed an automatic algorithm to extract the reference pixels for convenient use of the intercalibration model, with an assumption that there are sufficient pixels with stable night-time lights in the multi-temporal images. To automatically extract the stable pixels from images in two dates, all pixels in the two dates were entered into a linear regression model, and the outliers viewed as suspected changed pixels were discarded iteratively. Consequently, some stable pixels were extracted and the intercalibration model was implemented. Annual night-time light composites in Beijing, China, from 1992 to 2010 were taken as the study material, and the results show that the multi-temporal calibrated night-time light data have higher correlation with gross domestic production (GDP) (R 2 = 0.8734) and urban population (UP) (R 2 = 0.9269) than those of the uncalibrated images (with the R 2 values 0.7963 and 0.8575, respectively). Furthermore, the data inconsistency from different night-time light satellites in the same year was reduced with the proposed algorithm. The results demonstrate that the proposed algorithm is effective in intercalibrating the Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) images automatically.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-704X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 211
Permanent link to this record
 

 
Author Jou, J.-H.; Hsieh, C.-Y.; Tseng, J.-R.; Peng, S.-H.; Jou, Y.-C.; Hong, J.H.; Shen, S.-M.; Tang, M.-C.; Chen, P.-C.; Lin, C.-H.
Title Candle Light-Style Organic Light-Emitting Diodes Type Journal Article
Year 2013 Publication Advanced Functional Materials Abbreviated Journal Adv. Funct. Mater.
Volume 23 Issue 21 Pages 2750-2757
Keywords organic light emitting diodes; candle light; firelight; OLED; CRI; color rendition
Abstract (up) In response to the call for a physiologically-friendly light at night that shows low color temperature, a candle light-style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light-style emission is driven by electricity in lieu of the energy-wasting and greenhouse gas emitting hydrocarbon-burning candles invented 5000 years ago. This candle light-style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616301X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 284
Permanent link to this record