|   | 
Details
   web
Records
Author Dominoni, D.M.; Quetting, M.; Partecke, J.
Title Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula) Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 12 Pages e85069
Keywords Turdus merula; European blackbird; birds; animals; Reproduction
Abstract (up) Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany ; Department of Biology, University of Konstanz, Konstanz, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24376865; PMCID:PMC3869906 Approved no
Call Number IDA @ john @ Serial 49
Permanent link to this record
 

 
Author Nickla, D.L.
Title Ocular diurnal rhythms and eye growth regulation: where we are 50 years after Lauber Type Journal Article
Year 2013 Publication Experimental eye Research Abbreviated Journal Exp Eye Res
Volume 114 Issue Pages 25-34
Keywords Vision; Human Health; Review
Abstract (up) Many ocular processes show diurnal oscillations that optimize retinal function under the different conditions of ambient illumination encountered over the course of the 24 h light/dark cycle. Abolishing the diurnal cues by the use of constant darkness or constant light results in excessive ocular elongation, corneal flattening, and attendant refractive errors. A prevailing hypothesis is that the absence of the Zeitgeber of light and dark alters ocular circadian rhythms in some manner, and results in an inability of the eye to regulate its growth in order to achieve emmetropia, the matching of the front optics to eye length. Another visual manipulation that results in the eye growth system going into a “default” mode of excessive growth is form deprivation, in which a translucent diffuser deprives the eye of visual transients (spatial or temporal) while not significantly reducing light levels; these eyes rapidly elongate and become myopic. It has been hypothesized that form deprivation might constitute a type of “constant condition” whereby the absence of visual transients drives the eye into a similar default mode as that in response to constant light or dark. Interest in the potential influence of light cycles and ambient lighting in human myopia development has been spurred by a recent study showing a positive association between the amount of time that children spent outdoors and a reduced prevalence of myopia. The growing eyes of chickens and monkeys show a diurnal rhythm in axial length: Eyes elongate more during the day than during the night. There is also a rhythm in choroidal thickness that is in approximate anti-phase to the rhythm in eye length. The phases are altered in eyes growing too fast, in response to form deprivation or negative lenses, or too slowly, in response to myopic defocus, suggesting an influence of phase on the emmetropization system. Other potential rhythmic influences include dopamine and melatonin, which form a reciprocal feedback loop, and signal “day” and “night” respectively. Retinal dopamine is reduced during the day in form deprived myopic eyes, and dopamine D2 agonists inhibit ocular growth in animal models. Rhythms in intraocular pressure as well, may influence eye growth, perhaps as a mechanical stimulus triggering changes in scleral extracellular matrix synthesis. Finally, evidence shows varying influences of environmental lighting parameters on the emmetropization system, such as high intensity light being protective against myopia in chickens. This review will cover the evidence for the possible influence of these various factors on ocular growth. The recognition that ocular rhythms may play a role in emmetropization is a first step toward understanding how they may be manipulated in treatment therapies to prevent myopia in humans.
Address New England College of Optometry, Department of Biosciences, 424 Beacon Street, Boston, MA 02115, USA. nicklad@neco.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4835 ISBN Medium
Area Expedition Conference
Notes PMID:23298452; PMCID:PMC3742730 Approved no
Call Number GFZ @ kyba @ Serial 1987
Permanent link to this record
 

 
Author Shapira, I.; Walker, E.; Brunton, D.H.; Raubenheimer, D.
Title Responses to direct versus indirect cues of predation and competition in naϊve invasive mice: implications for management Type Journal Article
Year 2013 Publication New Zealand Journal of Ecology Abbreviated Journal NZ J. of Ecol.
Volume 37 Issue 1 Pages 33-40
Keywords Animals; Mus musculus; mice; New Zealand; foraging; moonlight; giving-up density; GUD; moon phase
Abstract (up) Many populations of invasive mice Mus musculus in New Zealand have experienced the removal of mammalian predators and competitors, with the consequence of mouse population irruptions. The effects of these removals on mouse foraging are largely unknown, yet this information is essential for developing and implementing better mouse control. We investigated the effects of direct and indirect predatory cues on foraging of free-ranging mice at a site where mammalian predators were eradicated 5 years previously. We used 17 stations, each containing four trays of millet seeds mixed thoroughly in sand, with three unfamiliar mammalian (a predator, a competitor, and a herbivore) odour treatments and a control (water), during the four phases of the moon. We measured mouse selectivity for treatment/control trays, giving-up densities (GUDs, a measure of food consumption), and tray encounter rates. Foraging by mice was not affected by odour cues from any of the unfamiliar mammals. Moonlight intensity, however, affected mouse foraging, with higher GUDs being recorded on brighter moon phases (full and waxing > new and waning) during the first night of the trials. This effect was less pronounced during the second night. Resource encounter rates were also affected, with the proportion of trays foraged lower during the brighter phases of the moon on both the first and second nights. We suggest that coordinating management efforts according to the phases of the moon has the potential to improve mouse control and reduce bait wastage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 01106465 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1364
Permanent link to this record
 

 
Author Kronfeld-Schor, N.; Dominoni, D.; de la Iglesia, H.; Levy, O.; Herzog, E.D.; Dayan, T.; Helfrich-Forster, C.
Title Chronobiology by moonlight Type Journal Article
Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 280 Issue 1765 Pages 20123088
Keywords Animals; Behavior, Animal/physiology; Circadian Rhythm/physiology; Feeding Behavior/*physiology; Invertebrates/*physiology; *Light; *Moon; Predatory Behavior/physiology; Reproduction/physiology; Vertebrates/physiology; communication; foraging; light pollution; lunar cycle; predation; reproduction
Abstract (up) Most studies in chronobiology focus on solar cycles (daily and annual). Moonlight and the lunar cycle received considerably less attention by chronobiologists. An exception are rhythms in intertidal species. Terrestrial ecologists long ago acknowledged the effects of moonlight on predation success, and consequently on predation risk, foraging behaviour and habitat use, while marine biologists have focused more on the behaviour and mainly on reproduction synchronization with relation to the Moon phase. Lately, several studies in different animal taxa addressed the role of moonlight in determining activity and studied the underlying mechanisms. In this paper, we review the ecological and behavioural evidence showing the effect of moonlight on activity, discuss the adaptive value of these changes, and describe possible mechanisms underlying this effect. We will also refer to other sources of night-time light ('light pollution') and highlight open questions that demand further studies.
Address Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel. nogaks@tauex.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:23825199; PMCID:PMC3712431 Approved no
Call Number IDA @ john @ Serial 29
Permanent link to this record
 

 
Author Mace, B.L.; McDaniel, J.
Title Visitor Evaluation of Night Sky Interpretation in Bryce Canyon National Park and Cedar Breaks National Monument Type Journal Article
Year 2013 Publication Journal of Interpretation Research Abbreviated Journal J. of Interp. Res.
Volume 18 Issue 2 Pages 39-57
Keywords parks; interpretation; social studies; Bryce Canyon National Park; Cedar Breaks National Monument; dark skies
Abstract (up) Natural lightscapes are an important resource for parks and protected areas, including Bryce Canyon National Park and Cedar Breaks National Monument. Both locations offer night sky interpretive programs, attracting over 27,000 visitors annually, equaling all other interpretive programs combined. Parks need to understand what drives visitor interest and park managers need to assess if night sky interpretation is meeting expectations. A total of 1,179 night and day visitors to Bryce Canyon National Park and Cedar Breaks National Monument served as participants and completed a 36-item survey measuring knowledge, attitudes, benefits, and behaviors related to the night sky. Results show those who attended a night sky interpretive program gained a significant amount of knowledge about night sky issues. Both day and night visitors have strongly held attitudes about light pollution and the protection of the night sky in national parks.
Address Department of Psychology, Southern Utah University, Cedar City, UT 84720 USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 374
Permanent link to this record