toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night increases depressive-like responses in male C3H/HeNHsd mice Type Journal Article
  Year 2013 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res  
  Volume 243 Issue Pages 74-78  
  Keywords Affect/physiology; Anhedonia/physiology; Animals; Behavior, Animal/*physiology; Circadian Rhythm/*physiology; Depression/*etiology/physiopathology; Hippocampus/*metabolism/pathology; Light/*adverse effects; Male; Mice; Mice, Inbred C3H; Neuropsychological Tests; Photoperiod  
  Abstract (up) Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFalpha and IL1beta gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.  
  Address Department of Neuroscience, Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23291153 Approved no  
  Call Number IDA @ john @ Serial 95  
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S. url  doi
openurl 
  Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
  Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue 12 Pages 6717-6766  
  Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight  
  Abstract (up) Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 468  
Permanent link to this record
 

 
Author Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. url  doi
openurl 
  Title Intercalibration of DMSP-OLS night-time light data by the invariant region method Type Journal Article
  Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 34 Issue 20 Pages 7356-7368  
  Keywords DMSP-OLS; remote sensing; light at night  
  Abstract (up) DMSP-OLS (Defense Meteorological Satellite Program Operational Linescan System) night-time light data can accurately reflect the scope and intensity of human activities. However, the raw data cannot be used directly for temporal analyses due to the lack of inflight calibration. There are three problems that should be addressed in intercalibration. First, because of differences between sensors, the data are not identical even when obtained in the same year. Second, different acquisition times may lead to random or systematic fluctuations in the data obtained by satellites in different orbits. Third, a pixel saturation phenomenon also exists in the urban centres of the image. Therefore, an invariant region method was used in this article, and the relative radiometric calibration and saturation correction achieved the desired results. In the meantime, intercalibration models for each satellite year of DMSP-OLS night-time light data were produced. Finally, intercalibration accuracy was evaluated, and the intercalibration results were tested with the corresponding gross domestic product (GDP) data.  
  Address School of Urban Planning and Design , Peking University , Shenzhen , 518055 , China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 203  
Permanent link to this record
 

 
Author Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M. url  doi
openurl 
  Title Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results Type Journal Article
  Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 35 Issue Pages 70  
  Keywords remote sensing; light pollution; VIIRS; satellite; radiometry  
  Abstract (up) Dramatically improved nighttime lights capabilities are presented by the launch of the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) sensor. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA’s NGDC Earth Observation Group has started adapting their algorithms to process these new data. The concept of compositing nighttime data comprises combining only high quality data components over a period of time to improve sensitivity and coverage. For this work, flag image are compiled to describe image quality. The flag categories include: daytime, twilight, stray light, lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data is defined as not having any of these attributes present. Two methods of reprojection are necessary due to data collection characteristics. Custom algorithms have been created to terrain-correct and reproject all data to a common 15 arc second grid. Results of compositing over two time periods in 2012 are presented to demonstrate data quality and initial capabilities. These data can be downloaded at http://www.ngdc.noaa.gov/eog/viirs/downloadviirsntl.html.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 197  
Permanent link to this record
 

 
Author Solbrig, J.E.; Lee, T.E.; Miller, S.D. url  doi
openurl 
  Title Advances in Remote Sensing: Imaging the Earth by Moonlight Type Journal Article
  Year 2013 Publication Eos, Transactions American Geophysical Union Abbreviated Journal Eos Trans. AGU  
  Volume 94 Issue 40 Pages 349-350  
  Keywords Remote Sensing; night; visible; VIIRS  
  Abstract (up) Earth's nighttime environment is being revealed in unprecedented detail by the new satellite-mounted Visible/Infrared Imaging Radiometer Suite (VIIRS). VIIRS' Day/Night Band (DNB) is a highly sensitive broadband visible channel capable of detecting light from cities and other terrestrial emission sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0096-3941 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 486  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: