toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M. url  doi
openurl 
  Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 82 Issue 2 Pages 478-485  
  Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank  
  Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.  
  Address (up) Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23190422 Approved no  
  Call Number IDA @ john @ Serial 44  
Permanent link to this record
 

 
Author Kantermann, T. url  doi
openurl 
  Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages R689-90  
  Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight  
  Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.  
  Address (up) Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23968925 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 501  
Permanent link to this record
 

 
Author Ruger, M.; St Hilaire, M.A.; Brainard, G.C.; Khalsa, S.-B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. url  doi
openurl 
  Title Human phase response curve to a single 6.5 h pulse of short-wavelength light Type Journal Article
  Year 2013 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume 591 Issue Pt 1 Pages 353-363  
  Keywords Adolescent; Adult; Body Temperature; Circadian Rhythm/*physiology; Female; Humans; *Light; Male; Melatonin/physiology; Young Adult; blue light; melatonin; photic response; whort-wavelength  
  Abstract The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 muW cm(-2), 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of -2.6 h and 1.3 h, respectively. The 480 nm PRC induced approximately 75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.  
  Address (up) Circadian Physiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. mrueger@rics.bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23090946; PMCID:PMC3630790 Approved no  
  Call Number IDA @ john @ Serial 239  
Permanent link to this record
 

 
Author Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux Jr., S.A.; Avery, M.L.; Crawford, R.L.; Manville II, A.M.; Travis, E.R.; Drake, D. url  doi
openurl 
  Title Avian mortality at communication towers in the United States and Canada: which species, how many, and where? Type Journal Article
  Year 2013 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 158 Issue Pages 410-419  
  Keywords  
  Abstract Birds migrating to and from breeding grounds in the United States and Canada are killed by the millions in collisions with lighted towers and their guy wires. Avian mortality at towers is highly variable across species, and the importance to each population depends on its size and trajectory. Building on our previous estimate of avian mortality at communication towers, we calculated mortality by species and by regions. To do this, we constructed a database of mortality by species at towers from available records and calculated the mean proportion of each species killed at towers within aggregated Bird Conservation Regions. These proportions were combined with mortality estimates that we previously calculated for those regions. We then compared our estimated bird mortality rates to the estimated populations of these species in the United States and Canada. Neotropical migrants suffer the greatest mortality; 97.4% of birds killed are passerines, mostly warblers (Parulidae, 58.4%), vireos (Vireonidae, 13.4%), thrushes (Turdidae, 7.7%), and sparrows (Emberizidae, 5.8%). Thirteen birds of conservation concern in the United States or Canada suffer annual mortality of 1–9% of their estimated total population. Of these, estimated annual mortality is >2% for Yellow Rail (Coturnicops noveboracensis), Swainson’s Warbler (Limnothlypis swainsonii), Pied-billed Grebe (Podilymbus podiceps), Bay-breasted Warbler (Setophaga castanea), Golden-winged Warbler (Vermivora chrysoptera), Worm-eating Warbler (Helmitheros vermivorum), Prairie Warbler (Setophaga discolor), and Ovenbird (Seiurus aurocapilla). Avian mortality from anthropogenic sources is almost always reported in the aggregate (“number of birds killed”), which cannot detect the species-level effects necessary to make conservation assessments. Our approach to per species estimates could be undertaken for other sources of chronic anthropogenic mortality.  
  Address (up) Communication towers; Mortality; Night lighting; Neotropical migrants; Collisions; Impact assessment; birds  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 54  
Permanent link to this record
 

 
Author Nievas Rosillo, M. pdf  url
openurl 
  Title Absolute photometry and Night Sky Brightness with all-sky cameras Type Report
  Year 2013 Publication e-prints Complutense Abbreviated Journal e-prints Complutense  
  Volume Issue 24626 Pages  
  Keywords Instrumentation; skyglow; measurement; modeling  
  Abstract All-sky cameras have proven to be powerful tools to continuously monitoring the sky in a wide range of fields in both Astrophysics and Meteorology. In this work, we have developed a complete software pipeline to analyze the night CCD images obtained with one of such systems. This let us to study typical parameters used in Astrophysics to characterize the night sky quality, such as the Sky Brightness, the Cloud Coverage and the Atmospheric Extinction, how they evolve over the time and their variability. Using our software, we analyzed a large set of data from AstMon-OT all-sky camera at Teide Observatory. Results from this work have been applied in the support to the spanish CTA site proposal at Izaña, Tenerife and are being discussed within the CTA consortium. A comparison with data from other devices that have been used in site characterization such as the IAC80 telescope is also presented. This comparison is used to validate the results of the analysis of all-sky images. Finally, we test our software with AstMon-UCM and DSLR cameras. Some general recommendations for the use of DSLR cameras are provided.  
  Address (up) Departamento de Astrofí­sica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, Madrid, Spain  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Madrid Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title e-prints Complutense Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1437  
Permanent link to this record
 

 
Author Aubé, M.; Roby, J.; Kocifaj, M. url  doi
openurl 
  Title Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e67798  
  Keywords Humans; *Light; Lighting/methods; Melatonin/*metabolism; Photosynthesis/*radiation effects; Plant Development/radiation effects; blue light; circadian disruption  
  Abstract Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.  
  Address (up) Departement de physique, Cegep de Sherbrooke, Sherbrooke, Quebec, Canada. martin.aube@cegepsherbrooke.qc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861808; PMCID:PMC3702543 Approved no  
  Call Number IDA @ john @ Serial 282  
Permanent link to this record
 

 
Author Stokkan, K.-A.; Folkow, L.; Dukes, J.; Neveu, M.; Hogg, C.; Siefken, S.; Dakin, S.C.; Jeffery, G. url  doi
openurl 
  Title Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1773 Pages 20132451  
  Keywords Animals; Skyglow  
  Abstract Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.  
  Address (up) Department of Arctic and Marine Biology, University of Tromso, , Tromso, Norway, Institute of Ophthalmology, University College London, , 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, , London, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24174115; PMCID:PMC3826237 Approved no  
  Call Number LoNNe @ kyba @ Serial 1636  
Permanent link to this record
 

 
Author Johnson, R.S.; Zhang, J.; Hyer, E.J.; Miller, S.D.; Reid, J.S. url  doi
openurl 
  Title Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band Type Journal Article
  Year 2013 Publication Atmospheric Measurement Techniques Abbreviated Journal Atmos. Meas. Tech.  
  Volume 6 Issue 5 Pages 1245-1255  
  Keywords VIIRS; remote sensing; Suomi NPP; aerosol; optical depth; AERONET; light pollution; measurements  
  Abstract A great need exists for reliable nighttime aerosol products at high spatial and temporal resolution. In this concept demonstration study, using Visible/Infrared Imager/Radiometer Suite (VIIRS) Day/Night Band (DNB) observations on the Suomi National Polar-orbiting Partnership (NPP) satellite, a new method is proposed for retrieving nighttime aerosol optical depth (τ) using the contrast between regions with and without artificial surface lights. Evaluation of the retrieved τ values against daytime AERONET data from before and after the overpass of the VIIRS satellite over the Cape Verde, Grand Forks, and Alta Floresta AERONET stations yields a coefficient of determination (r2) of 0.71. This study suggests that the VIIRS DNB has the potential to provide useful nighttime aerosol detection and property retrievals.  
  Address (up) Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-8548 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 200  
Permanent link to this record
 

 
Author Schoech, S.J.; Bowman, R.; Hahn, T.P.; Goymann, W.; Schwabl, I.; Bridge, E.S. url  doi
openurl 
  Title The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica) Type Journal Article
  Year 2013 Publication Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology Abbreviated Journal J Exp Zool A Ecol Genet Physiol  
  Volume 319 Issue 9 Pages 527-538  
  Keywords Animals; Corticosterone/blood; Ecosystem; Female; *Light; Male; Melatonin/blood; Passeriformes/*physiology; *Photoperiod; Reproduction/*physiology; Testosterone/blood  
  Abstract Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were approximately 4x greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.  
  Address (up) Department of Biological Sciences, University of Memphis, Memphis, Tennessee  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-5223 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23970442 Approved no  
  Call Number IDA @ john @ Serial 37  
Permanent link to this record
 

 
Author Fuller, G. (ed) pdf  openurl
  Title The Night Shift: Lighting and Nocturnal Strepsirrhine Care in Zoos Type Book Whole
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords zoos; light at night; circadian disruption; strepsirrhines; primates; lorises; pottos; lighting design  
  Abstract Over billions of years of evolution, light from the sun, moon, and stars has provided

organisms with reliable information about the passage of time. Photic cues entrain

the circadian system, allowing animals to perform behaviors critical for survival and

reproduction at optimal times. Modern artificial lighting has drastically altered

environmental light cues. Evidence is accumulating that exposure to light at night

(particularly blue wavelengths) from computer screens, urban light pollution, or as

an occupational hazard of night-shift work has major implications for human health.

Nocturnal animals are the shift workers of zoos; they are generally housed on

reversed light cycles so that daytime visitors can observe their active behaviors. As a

result, they are exposed to artificial light throughout their subjective night. The goal

of this investigation was to examine critically the care of nocturnal strepsirrhine

primates in North American zoos, focusing on lorises (Loris and Nycticebus spp.) and pottos (Perodicticus potto). The general hypothesis was that exhibit lighting design affects activity patterns and circadian physiology in nocturnal strepsirrhines. The

first specific aim was to assess the status of these populations. A multi-institutional husbandry survey revealed little consensus among zoos in lighting design, with both red and blue light commonly used for nocturnal illumination. A review of medical records also revealed high rates of neonate mortality. The second aim was to

develop methods for measuring the effects of exhibit lighting on behavior and

health. The use of actigraphy for automated activity monitoring was explored.

Methods were also developed for measuring salivary melatonin and cortisol as

indicators of circadian disruption. Finally, a multi-institutional study was conducted

comparing behavioral and endocrine responses to red and blue dark phase lighting.

These results showed greater activity levels in strepsirrhines housed under red light than blue. Salivary melatonin concentrations in pottos suggested that blue light

suppressed nocturnal melatonin production at higher intensities, but evidence for

circadian disruption was equivocal. These results add to the growing body of

evidence on the detrimental effects of blue light at night and are a step towards

empirical recommendations for nocturnal lighting design in zoos.
 
  Address (up) Department of Biology, Case Western Reserve University  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Fuller, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: