toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zhou, H.; Hawkins, H.G.; Miles, J.D. url  openurl
  Title Guidelines for Freeway Lighting Curfews Type Journal Article
  Year 2013 Publication Technical Report No. FHWA/TX-13/0-6645-1, Texas A&M Transportation Institute Abbreviated Journal  
  Volume Issue Pages á-72  
  Keywords Lighting Systems; Regulation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 445  
Permanent link to this record
 

 
Author (down) Zamorano, J.; de Miguel, A.; Alfaro, E.; Martínez-Delgado, D.; Ocaña, F.; Nievas, M.; mez Castaño, J. openurl 
  Title NIXNOX project: Enjoy the dark skies of Spain Type Journal Article
  Year 2013 Publication In Highlights of Spanish Astrophysics VII Abbreviated Journal  
  Volume 1 Issue Pages 962–970  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 982  
Permanent link to this record
 

 
Author (down) Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. url  doi
openurl 
  Title Intercalibration of DMSP-OLS night-time light data by the invariant region method Type Journal Article
  Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 34 Issue 20 Pages 7356-7368  
  Keywords DMSP-OLS; remote sensing; light at night  
  Abstract DMSP-OLS (Defense Meteorological Satellite Program Operational Linescan System) night-time light data can accurately reflect the scope and intensity of human activities. However, the raw data cannot be used directly for temporal analyses due to the lack of inflight calibration. There are three problems that should be addressed in intercalibration. First, because of differences between sensors, the data are not identical even when obtained in the same year. Second, different acquisition times may lead to random or systematic fluctuations in the data obtained by satellites in different orbits. Third, a pixel saturation phenomenon also exists in the urban centres of the image. Therefore, an invariant region method was used in this article, and the relative radiometric calibration and saturation correction achieved the desired results. In the meantime, intercalibration models for each satellite year of DMSP-OLS night-time light data were produced. Finally, intercalibration accuracy was evaluated, and the intercalibration results were tested with the corresponding gross domestic product (GDP) data.  
  Address School of Urban Planning and Design , Peking University , Shenzhen , 518055 , China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 203  
Permanent link to this record
 

 
Author (down) Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages 1554-1558  
  Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
 

 
Author (down) Wood, B.; Rea, M.S.; Plitnick, B.; Figueiro, M.G. url  doi
openurl 
  Title Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression Type Journal Article
  Year 2013 Publication Applied Ergonomics Abbreviated Journal Appl Ergon  
  Volume 44 Issue 2 Pages 237-240  
  Keywords Adolescent; *Computers, Handheld; Female; Humans; Light/*adverse effects; Male; Melatonin/*biosynthesis; Photoperiod; Saliva/*metabolism; Sleep/radiation effects; Time Factors; Young Adult; melatonin  
  Abstract Exposure to light from self-luminous displays may be linked to increased risk for sleep disorders because these devices emit optical radiation at short wavelengths, close to the peak sensitivity of melatonin suppression. Thirteen participants experienced three experimental conditions in a within-subjects design to investigate the impact of self-luminous tablet displays on nocturnal melatonin suppression: 1) tablets-only set to the highest brightness, 2) tablets viewed through clear-lens goggles equipped with blue light-emitting diodes that provided 40 lux of 470-nm light at the cornea, and 3) tablets viewed through orange-tinted glasses (dark control; optical radiation <525 nm approximately 0). Melatonin suppressions after 1-h and 2-h exposures to tablets viewed with the blue light were significantly greater than zero. Suppression levels after 1-h exposure to the tablets-only were not statistically different than zero; however, this difference reached significance after 2 h. Based on these results, display manufacturers can determine how their products will affect melatonin levels and use model predictions to tune the spectral power distribution of self-luminous devices to increase or to decrease stimulation to the circadian system.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. woodb5@rpi.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6870 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22850476 Approved no  
  Call Number IDA @ john @ Serial 136  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: