toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Eisenstein, M. url  doi
openurl 
  Title Chronobiology: stepping out of time Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S10-2  
  Keywords Human Health; Animals; Benzofurans/therapeutic use; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/genetics/*physiology; Cyclopropanes/therapeutic use; Efficiency/physiology; Humans; Melatonin/agonists/metabolism; Obesity/metabolism; Sleep/genetics/*physiology; Suprachiasmatic Nucleus/metabolism  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698500 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 500  
Permanent link to this record
 

 
Author (up) Elejoste, P.; Angulo, I.; Perallos, A.; Chertudi, A.; Zuazola, I.J.G.; Moreno, A.; Azpilicueta, L.; Astrain, J.J.; Falcone, F.; Villadangos, J. url  doi
openurl 
  Title An easy to deploy street light control system based on wireless communication and LED technology Type Journal Article
  Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 13 Issue 5 Pages 6492-6523  
  Keywords Lighting  
  Abstract This paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding's environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.  
  Address Deusto Institute of Technology (DeustoTech), University of Deusto, Bilbao 48007, Spain. perallos@deusto.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23681092; PMCID:PMC3690067 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 631  
Permanent link to this record
 

 
Author (up) Elvidge, C.; Zhizhin, M.; Hsu, F.-C.; Baugh, K. url  doi
openurl 
  Title VIIRS Nightfire: Satellite Pyrometry at Night Type Journal Article
  Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue 9 Pages 4423-4449  
  Keywords SNPP; VIIRS; fire detection; gas flaring; biomass burning; fossil fuel carbon emissions  
  Abstract The Nightfire algorithm detects and characterizes sub-pixel hot sources using multispectral data collected globally, each night, by the Suomi National Polar Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The spectral bands utilized span visible, near-infrared (NIR), short-wave infrared (SWIR), and mid-wave infrared (MWIR). The primary detection band is in the SWIR, centered at 1.6 μm. Without solar input, the SWIR spectral band records sensor noise, punctuated by high radiant emissions associated with gas flares, biomass burning, volcanoes, and industrial sites such as steel mills. Planck curve fitting of the hot source radiances yields temperature (K) and emission scaling factor (ESF). Additional calculations are done to estimate source size (m2), radiant heat intensity (W/m2), and radiant heat (MW). Use of the sensor noise limited M7, M8, and M10 spectral bands at night reduce scene background effects, which are widely reported for fire algorithms based on MWIR and long-wave infrared. High atmospheric transmissivity in the M10 spectral band reduces atmospheric effects on temperature and radiant heat retrievals. Nightfire retrieved temperature estimates for sub-pixel hot sources ranging from 600 to 6,000 K. An intercomparison study of biomass burning in Sumatra from June 2013 found Nightfire radiant heat (MW) to be highly correlated to Moderate Resolution Imaging Spectrometer (MODIS) Fire Radiative Power (MW).  
  Address Earth Observation Group, NOAA National Geophysical Data Center, Boulder, CO 80305, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 199  
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. url  doi
openurl 
  Title Why VIIRS data are superior to DMSP for mapping nighttime lights Type Journal Article
  Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 35 Issue Pages 62  
  Keywords  
  Abstract For more than forty years the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has been the only satellite system collecting global low-light imaging data. A series of twenty-four DMSP satellites have collected low-light imaging data. The design of the OLS has not changed significantly since satellite F-4 flew in the late 1970’s and OLS data have relatively coarse spatial resolution, limited dynamic range, and lack in-flight calibration. In 2011 NASA and NOAA launched the Suomi National Polar Partnership (SNPP) satellite carrying the first Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. The VIIRS collects low light imaging data and has several improvements over the OLS’ capabilities. In this paper we contrast the nighttime low light imaging collection capabilities of these two systems and compare their data products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 198  
Permanent link to this record
 

 
Author (up) Femia, N.; Fortunato, M.; Vitelli, M. url  doi
openurl 
  Title Light-to-Light: PV-Fed LED Lighting Systems Type Journal Article
  Year 2013 Publication IEEE Transactions on Power Electronics Abbreviated Journal IEEE Trans. Power Electron.  
  Volume 28 Issue 8 Pages 4063-4073  
  Keywords light-to-light systems; outdoor lighting; lighting technology; LED; LED lighting; photovoltaics; PV  
  Abstract This paper discusses the principle of operation, dynamic modeling, and control design for light-to-light (LtL) systems, whose aim is to directly convert the sun irradiation into artificial light. The system discussed in this paper is composed by a photovoltaic (PV) panel, an LED array, a dc-dc converter dedicated to the maximum power point tracking of the PV panel and a dc-dc converter dedicated to drive the LEDs array. A system controller is also included, whose goal is to ensure the matching between the maximum available PV power and the LED power by means of a low-frequency LEDs dimming. An experimental design example is discussed to illustrate the functionalities of the LtL system.  
  Address Dipt. di Ing. Elettron. e Ing. Inf., Univ. of Salerno, Salerno, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-8993 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 331  
Permanent link to this record
 

 
Author (up) Figueiro, M.G.; Wood, B.; Plitnick, B.; Rea, M.S. url  doi
openurl 
  Title The impact of watching television on evening melatonin levels: Impact of watching television on evening melatonin Type Journal Article
  Year 2013 Publication Journal of the Society for Information Display Abbreviated Journal Jnl Soc Info Display  
  Volume 21 Issue 10 Pages 417-421  
  Keywords Human Health; television; correlated color temperature; sleep; melatonin levels; blue light; circadian disruption  
  Abstract Self-luminous electronic devices emit optical radiation at short wavelengths, close to the peak sensitivity of melatonin suppression. The present paper investigated if light from a 178-cm (70 in.) television suppressed melatonin. Results showed that light from televisions does not impact melatonin levels in the evening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1071-0922 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 498  
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
  Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 28 Issue 4 Pages 262-271  
  Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity  
  Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.  
  Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23929553; PMCID:PMC4033305 Approved no  
  Call Number IDA @ john @ Serial 28  
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
  Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology  
  Volume 154 Issue 10 Pages 3817-3825  
  Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain  
  Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861373 Approved no  
  Call Number IDA @ john @ Serial 93  
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night increases depressive-like responses in male C3H/HeNHsd mice Type Journal Article
  Year 2013 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res  
  Volume 243 Issue Pages 74-78  
  Keywords Affect/physiology; Anhedonia/physiology; Animals; Behavior, Animal/*physiology; Circadian Rhythm/*physiology; Depression/*etiology/physiopathology; Hippocampus/*metabolism/pathology; Light/*adverse effects; Male; Mice; Mice, Inbred C3H; Neuropsychological Tests; Photoperiod  
  Abstract Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFalpha and IL1beta gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.  
  Address Department of Neuroscience, Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23291153 Approved no  
  Call Number IDA @ john @ Serial 95  
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dark nights reverse metabolic disruption caused by dim light at night Type Journal Article
  Year 2013 Publication Obesity (Silver Spring, Md.) Abbreviated Journal Obesity (Silver Spring)  
  Volume 21 Issue 6 Pages 1159-1164  
  Keywords Animals; Body Mass Index; Energy Intake; Gene Expression; Glucose Tolerance Test; *Light; Male; Mice; Obesity/*epidemiology/etiology; *Photoperiod; Weight Gain  
  Abstract OBJECTIVE: The increasing prevalence of obesity and related metabolic disorders coincides with increasing exposure to light at night. Previous studies report that mice exposed to dim light at night (dLAN) develop symptoms of metabolic syndrome. This study investigated whether mice returned to dark nights after dLAN exposure recover metabolic function. DESIGN AND METHODS: Male Swiss-Webster mice were assigned to either: standard light-dark (LD) conditions for 8 weeks (LD/LD), dLAN for 8 weeks (dLAN/dLAN), LD for 4 weeks followed by 4 weeks of dLAN (LD/dLAN), and dLAN for 4 weeks followed by 4 weeks of LD (dLAN/LD). RESULTS: After 4 weeks in their respective lighting conditions both groups initially placed in dLAN increased body mass gain compared to LD mice. Half of the dLAN mice (dLAN/LD) were then transferred to LD and vice versa (LD/dLAN). Following the transfer dLAN/dLAN and LD/dLAN mice gained more weight than LD/LD and dLAN/LD mice. At the conclusion of the study dLAN/LD mice did not differ from LD/LD mice with respect to weight gain and had lower fat pad mass compared to dLAN/dLAN mice. Compared to all other groups dLAN/dLAN mice decreased glucose tolerance as indicated by an intraperitoneal glucose tolerance test at week 7, indicating that dLAN/LD mice recovered glucose metabolism. dLAN/dLAN mice also increased MAC1 mRNA expression in peripheral fat as compared to both LD/LD and dLAN/LD mice, suggesting peripheral inflammation is induced by dLAN, but not sustained after return to LD. CONCLUSION: These results suggest that re-exposure to dark nights ameliorates metabolic disruption caused by dLAN exposure.  
  Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, Ohio State University, Columbus, Ohio 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1930-7381 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23666854 Approved no  
  Call Number IDA @ john @ Serial 167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: