toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grant, R.; Halliday, T.; Chadwick, E. url  doi
openurl 
  Title Amphibians' response to the lunar synodic cycle--a review of current knowledge, recommendations, and implications for conservation Type Journal Article
  Year 2013 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology  
  Volume 24 Issue 1 Pages 53-62  
  Keywords amphibians; circular statistics; light; lunar cycle; moon phase; predator avoidance; reproductive synchronization; moonlight  
  Abstract The way in which amphibians respond to the geophysical changes brought about by the lunar synodic cycle is a neglected area of their ecology, but one which has recently generated interest. Knowledge of how amphibians respond to lunar phase is of intrinsic interest and also may be important for conservation and monitoring of populations. We surveyed the literature on amphibians’ responses to the lunar cycle and found 79 examples where moon phase in relation to amphibian behavior and ecology had been studied, across diverse amphibian taxa. Of the examples reviewed, most of them show some type of response to lunar phase, with only a few species being unaffected. We found that there is no significant difference between the numbers of species which increase, and those that decrease activity or reproductive behavior (including calling) during a full moon. The responses to the lunar cycle can not be generalized across taxonomic group, but instead are highly species specific and relate directly to the species’ ecology. The primary reasons for changes in amphibian behavior in response to the lunar cycle appear to be temporal synchronization of breeding and predator avoidance. Responses to changes in prey availability, facilitation of visual signalling and use of lunar cues in navigation and homing are less prevalent but merit further investigation. Comparisons between studies are hampered by differences in field and analytical methods; we therefore make a number of recommendations for future collection and analysis of data related to lunar phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1045-2249 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 81  
Permanent link to this record
 

 
Author Prugh, L.R.; Golden, C.D. url  doi
openurl 
  Title Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 83 Issue 2 Pages 504-514  
  Keywords foraging efficiency; giving-up density; illumination; indirect effects; lunar cycles; moonlight; nocturnality; phylogenetic meta-analysis; predation risk; risk-sensitive foraging  
  Abstract The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.  
  Address Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1, Fairbanks, AK, 99775, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24102189 Approved no  
  Call Number (up) IDA @ john @ Serial 83  
Permanent link to this record
 

 
Author Rockhill, A.P.; DePerno, C.S.; Powell, R.A. url  doi
openurl 
  Title The effect of illumination and time of day on movements of bobcats (Lynx rufus) Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e69213  
  Keywords Animals; Female; *Lighting; Lynx/*physiology; Male; Moon; Movement/*physiology; North Carolina; Time Factors; Wetlands  
  Abstract Understanding behavioral changes of prey and predators based on lunar illumination provides insight into important life history, behavioral ecology, and survival information. The objectives of this research were to determine if bobcat movement rates differed by period of day (dark, moon, crepuscular, day), lunar illumination (<10%, 10 – <50%, 50 – <90%, >90%), and moon phase (new, full). Bobcats had high movement rates during crepuscular and day periods and low movement rates during dark periods with highest nighttime rates at 10-<50% lunar illumination. Bobcats had highest movement rates during daytime when nighttime illumination was low (new moon) and higher movement rates during nighttime when lunar illumination was high (full moon). The behaviors we observed are consistent with prey availability being affected by light level and by limited vision by bobcats during darkness.  
  Address Fisheries, Wildlife, and Conservation Biology, North Carolina State University, Raleigh, North Carolina, USA. aimee_rockhill@ncsu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861963; PMCID:PMC3704646 Approved no  
  Call Number (up) IDA @ john @ Serial 84  
Permanent link to this record
 

 
Author Bukalev, A.V.; Vinogradova, I.A.; Zabezhinskii, M.A.; Semenchenko, A.V.; Anisimov, V.N. url  doi
openurl 
  Title Light pollution increases morbidity and mortality rate from different causes in female rats Type Journal Article
  Year 2013 Publication Advances in Gerontology Abbreviated Journal Adv Gerontol  
  Volume 3 Issue 3 Pages 180-188  
  Keywords light-at-night; spontaneous tumors; nontumor pathology epiphysis; rats; animals; mammals  
  Abstract The influence of different light regimes (constant light, LL; constant darkness, DD; standard light regime, LD, 12 hours light/12 hours darkness; and natural lighting of the northwest of Russia (NL) on non-tumor pathology revealed in the post-mortem examination of female rats has been studied. It was found that keeping 25-days-old animals under LL and NL conditions led to an increase in the number of infectious diseases and the substantially faster development of spontaneous tumors (2.9 and 3.3 diseases per one rat, respectively), variety of nontumor pathology found in dead rats, compared with the animals in standard (standard light) regime (1.72 diseases per one rat). Light deprivation (DD) led to a substantial reduction in the development of new growth, as well as nontumor and infectious diseases (1.06 diseases per one rat), compared to the same parameters in a standard light regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-0570 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 89  
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
  Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology  
  Volume 154 Issue 10 Pages 3817-3825  
  Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain  
  Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861373 Approved no  
  Call Number (up) IDA @ john @ Serial 93  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: