toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Czeisler, C.A. url  doi
openurl 
  Title Perspective: casting light on sleep deficiency Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S13  
  Keywords Human Health; Circadian Rhythm/physiology/radiation effects; Electricity/adverse effects; Humans; Jet Lag Syndrome/etiology/physiopathology/therapy; Lighting/*adverse effects; Melatonin/metabolism/secretion; Phototherapy; Sleep Deprivation/epidemiology/*etiology/*physiopathology/therapy; Suprachiasmatic Nucleus/physiology/radiation effects  
  Abstract  
  Address Division of Sleep Medicine, Harvard Medical School, and Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, in Boston, Massachusetts, USA. charles_czeisler@hms.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698501 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 499  
Permanent link to this record
 

 
Author Eisenstein, M. url  doi
openurl 
  Title Chronobiology: stepping out of time Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S10-2  
  Keywords Human Health; Animals; Benzofurans/therapeutic use; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/genetics/*physiology; Cyclopropanes/therapeutic use; Efficiency/physiology; Humans; Melatonin/agonists/metabolism; Obesity/metabolism; Sleep/genetics/*physiology; Suprachiasmatic Nucleus/metabolism  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698500 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 500  
Permanent link to this record
 

 
Author Kantermann, T. url  doi
openurl 
  Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages R689-90  
  Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight  
  Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.  
  Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23968925 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 501  
Permanent link to this record
 

 
Author Kim, J.; Hwang, K.; Cho, J.; Koo, D.; Joo, E.; Hong, S. url  doi
openurl 
  Title Effect of bedside light on sleep quality and background eeg rhythms Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 14 Issue Pages e170  
  Keywords Human Health  
  Abstract Artificial lighting has benefited society by extending the length of a productive day, but it can be ”light pollution” when it becomes excessive. Unnecessary exposure to artificial light at night can cause myopia, obesity, metabolic disorders and even some type of cancers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 502  
Permanent link to this record
 

 
Author Owens, B. url  doi
openurl 
  Title Obesity: heavy sleepers Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S8-9  
  Keywords Human Health; Animals; Body Mass Index; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/physiology; Energy Metabolism/*physiology; Ghrelin/metabolism; Humans; Insulin Resistance/physiology; Leptin/metabolism; Male; Mice; Obesity/*physiopathology; Satiety Response/physiology; Sleep/*physiology; Suprachiasmatic Nucleus/physiology; Time Factors; Weight Gain/physiology; Weight Loss/physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698508 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 503  
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages 1554-1558  
  Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
 

 
Author Chamorro, E.; Bonnin-Arias, C.; Perez-Carrasco, M.J.; Munoz de Luna, J.; Vazquez, D.; Sanchez-Ramos, C. url  doi
openurl 
  Title Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro Type Journal Article
  Year 2013 Publication Photochemistry and Photobiology Abbreviated Journal Photochem Photobiol  
  Volume 89 Issue 2 Pages 468-473  
  Keywords Human Health; Apoptosis/*radiation effects; Biological Markers/metabolism; Caspases/metabolism; Cell Survival/radiation effects; DNA Damage; Epithelial Cells/cytology/metabolism/*radiation effects; Histones/metabolism; Humans; Light; Membrane Potential, Mitochondrial/*radiation effects; Mitochondria/*radiation effects; Photoperiod; Primary Cell Culture; Reactive Oxygen Species/metabolism; Retinal Pigment Epithelium/cytology/metabolism/*radiation effects  
  Abstract Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.  
  Address Neuro-Computing and Neuro-Robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain. eva.chamorro@opt.ucm.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0031-8655 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22989198 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 511  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  openurl
  Title Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Type Journal Article
  Year 2013 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal  
  Volume 125 Issue 933 Pages 1370-1382  
  Keywords Skyglow  
  Abstract Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth’s surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 539  
Permanent link to this record
 

 
Author Solano Lamphar, H.A.; Kocifaj, M. url  doi
openurl 
  Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 2 Pages e56563  
  Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception  
  Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.  
  Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23441205; PMCID:PMC3575508 Approved no  
  Call Number LoNNe @ schroer @ Serial 578  
Permanent link to this record
 

 
Author Forbes, C.; Hammill, E. url  doi
openurl 
  Title Fear in the dark? Community-level effects of non-lethal predators change with light regime Type Journal Article
  Year 2013 Publication Oikos Abbreviated Journal Oikos  
  Volume 122 Issue 12 Pages 1662-1668  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 597  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: