|   | 
Details
   web
Records
Author Haus, E.L.; Smolensky, M.H.
Title Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation Type Journal Article
Year 2013 Publication Sleep Medicine Reviews Abbreviated Journal Sleep Med Rev
Volume 17 Issue 4 Pages (down) 273-284
Keywords Cell Cycle/physiology; Circadian Rhythm/*physiology; Epigenesis, Genetic/physiology; Humans; Light; Melatonin/physiology; Neoplasms/*etiology; Risk Factors; Sleep Deprivation/*complications; Work Schedule Tolerance/*physiology; oncogenesis
Abstract Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.
Address Department of Laboratory Medicine & Pathology, University of Minnesota and Health Partners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA. Erhard.X.Haus@HealthPartners.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1087-0792 ISBN Medium
Area Expedition Conference
Notes PMID:23137527 Approved no
Call Number IDA @ john @ Serial 157
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages (down) 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record
 

 
Author Wood, B.; Rea, M.S.; Plitnick, B.; Figueiro, M.G.
Title Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression Type Journal Article
Year 2013 Publication Applied Ergonomics Abbreviated Journal Appl Ergon
Volume 44 Issue 2 Pages (down) 237-240
Keywords Adolescent; *Computers, Handheld; Female; Humans; Light/*adverse effects; Male; Melatonin/*biosynthesis; Photoperiod; Saliva/*metabolism; Sleep/radiation effects; Time Factors; Young Adult; melatonin
Abstract Exposure to light from self-luminous displays may be linked to increased risk for sleep disorders because these devices emit optical radiation at short wavelengths, close to the peak sensitivity of melatonin suppression. Thirteen participants experienced three experimental conditions in a within-subjects design to investigate the impact of self-luminous tablet displays on nocturnal melatonin suppression: 1) tablets-only set to the highest brightness, 2) tablets viewed through clear-lens goggles equipped with blue light-emitting diodes that provided 40 lux of 470-nm light at the cornea, and 3) tablets viewed through orange-tinted glasses (dark control; optical radiation <525 nm approximately 0). Melatonin suppressions after 1-h and 2-h exposures to tablets viewed with the blue light were significantly greater than zero. Suppression levels after 1-h exposure to the tablets-only were not statistically different than zero; however, this difference reached significance after 2 h. Based on these results, display manufacturers can determine how their products will affect melatonin levels and use model predictions to tune the spectral power distribution of self-luminous devices to increase or to decrease stimulation to the circadian system.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. woodb5@rpi.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6870 ISBN Medium
Area Expedition Conference
Notes PMID:22850476 Approved no
Call Number IDA @ john @ Serial 136
Permanent link to this record
 

 
Author Posch, T.; Hölker, F.; Freyhoff, A.; Uhlmann, T.
Title (Hrsg.): Das Ende der Nacht. Lichtsmog: Gefahren – Perspektiven – Lösungen. 2. Auflage, Wiley-VCH Verlag 2013 Type Journal Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages (down) 231
Keywords Ecology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 679
Permanent link to this record
 

 
Author Shimmura, Tsuyoshi; Yoshimura, Takashi
Title Circadian clock determines the timing of rooster crowing Type Journal Article
Year 2013 Publication Current Biology Abbreviated Journal
Volume 23 Issue 6 Pages (down) R231–R233
Keywords animals; rooster; bird
Abstract Crowing of roosters is described by onomatopoetic terms such as ‘cock-a-doodle-doo’ (English), ‘ki-ke-ri-ki’ (German), and ‘ko-ke-kok-koh’ (Japanese). Rooster crowing is a symbol of the break of dawn in many countries. Indeed, crowing is frequently observed in the morning [1] . However, people also notice that crowing is sometimes observed at other times of day. Therefore, it is yet unclear whether crowing is under the control of an internal biological clock, or is simply caused by external stimuli. Here we show that predawn crowing is under the control of a circadian clock. Although external stimuli such as light and crowing by other individuals also induce roosters’ crowing, the magnitude of this induction is also regulated by a circadian clock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1600
Permanent link to this record