toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fonken, Laura K; Weil, Zachary M; Nelson, Randy J url  doi
openurl 
  Title Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide Type Journal Article
  Year 2013 Publication Brain, Behavior, and Immunity Abbreviated Journal  
  Volume 34 Issue Pages 159-163  
  Keywords (up) animals; rodents; metabolism; health  
  Abstract The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24 h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1588  
Permanent link to this record
 

 
Author Shimmura, Tsuyoshi; Yoshimura, Takashi url  doi
openurl 
  Title Circadian clock determines the timing of rooster crowing Type Journal Article
  Year 2013 Publication Current Biology Abbreviated Journal  
  Volume 23 Issue 6 Pages R231–R233  
  Keywords (up) animals; rooster; bird  
  Abstract Crowing of roosters is described by onomatopoetic terms such as ‘cock-a-doodle-doo’ (English), ‘ki-ke-ri-ki’ (German), and ‘ko-ke-kok-koh’ (Japanese). Rooster crowing is a symbol of the break of dawn in many countries. Indeed, crowing is frequently observed in the morning [1] . However, people also notice that crowing is sometimes observed at other times of day. Therefore, it is yet unclear whether crowing is under the control of an internal biological clock, or is simply caused by external stimuli. Here we show that predawn crowing is under the control of a circadian clock. Although external stimuli such as light and crowing by other individuals also induce roosters’ crowing, the magnitude of this induction is also regulated by a circadian clock.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1600  
Permanent link to this record
 

 
Author Stokkan, K.-A.; Folkow, L.; Dukes, J.; Neveu, M.; Hogg, C.; Siefken, S.; Dakin, S.C.; Jeffery, G. url  doi
openurl 
  Title Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1773 Pages 20132451  
  Keywords (up) Animals; Skyglow  
  Abstract Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.  
  Address Department of Arctic and Marine Biology, University of Tromso, , Tromso, Norway, Institute of Ophthalmology, University College London, , 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, , London, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24174115; PMCID:PMC3826237 Approved no  
  Call Number LoNNe @ kyba @ Serial 1636  
Permanent link to this record
 

 
Author van der Burght, B.W.; Hansen, M.; Olsen, J.; Zhou, J.; Wu, Y.; Nissen, M.H.; Sparrow, J.R. url  doi
openurl 
  Title Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells Type Journal Article
  Year 2013 Publication Acta Ophthalmologica Abbreviated Journal Acta Ophthalmol  
  Volume 91 Issue 7 Pages e537-45  
  Keywords (up) Apoptosis; Cell Line; Cell Survival; Gene Expression Regulation/*physiology; Humans; Light; Lipofuscin/genetics; Oligonucleotide Array Sequence Analysis; Principal Component Analysis; Pyridinium Compounds; RNA, Messenger/genetics; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium/metabolism/pathology/*radiation effects; Retinoids/*genetics; Transcriptome; A2e; age-related macular degeneration; apoptosis; complement cascade; gene expression; retinal pigment epithelial cells; blue light; retinal pigment epithelial; epigenetics  
  Abstract PURPOSE: Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS: A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS: Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION: This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.  
  Address Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-375X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23742627 Approved no  
  Call Number IDA @ john @ Serial 346  
Permanent link to this record
 

 
Author Hsu, F.-C.; Elvidge, C.D.; Matsuno, Y. url  doi
openurl 
  Title Exploring and estimating in-use steel stocks in civil engineering and buildings from night-time lights Type Journal Article
  Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 34 Issue 2 Pages 490-504  
  Keywords (up) architecture; engineering; light at night  
  Abstract Steel is the most widely used metal in the world, and numerous studies have investigated its stock and flow. Two basic methods for analysing material flow and accounting for stock are the top-down and bottom-up approaches. Their applicability, however, largely depends on data availability. To overcome this limitation, we have contemplated using satellite imagery as a proxy for missing data. In a previous study, we confirmed the correlation between night-time light radiance and civil engineering/building in-use steel stocks in Japan. In this study, the scope of the investigation was expanded to a global scale, examining correlations in different regions of the world. We found that night-time light radiance and in-use steel stocks have region-specific linear correlations, which are influenced by construction styles, which in turn depend on climate, seismic activity, cultural preferences, etc. The results were then applied to countries in the various regions whose in-use steel stocks were previously unreported. This technique produced an estimate of the global civil engineering/building in-use steel stock of around 9 × 109 tonnes (9 Gt), with 1.24 Gt being previously unreported. As a further step, this study shows the spatial distribution of civil engineering/building in-use steel stock in each region.  
  Address Department of Materials Engineering , Graduate School of Engineering, The University of Tokyo , Tokyo , 113-8656 , Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 210  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: