toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grundy, A.; Richardson, H.; Burstyn, I.; Lohrisch, C.; SenGupta, S.K.; Lai, A.S.; Lee, D.; Spinelli, J.J.; Aronson, K.J. url  doi
openurl 
  Title Increased risk of breast cancer associated with long-term shift work in Canada Type Journal Article
  Year 2013 Publication Occupational and Environmental Medicine Abbreviated Journal Occup Environ Med  
  Volume 70 Issue 12 Pages 831-838  
  Keywords (up) Human Health; Adult; Aged; Aged, 80 and over; Breast Neoplasms/epidemiology/*etiology/metabolism; British Columbia/epidemiology; Case-Control Studies; Female; Humans; Menopause; Middle Aged; Occupational Diseases/*epidemiology; Ontario/epidemiology; Receptors, Estrogen/metabolism; Receptors, Progesterone/metabolism; Risk Factors; Tumor Markers, Biological/metabolism; Work Schedule Tolerance/*physiology; Young Adult  
  Abstract OBJECTIVES: Long-term night work has been suggested as a risk factor for breast cancer; however, additional studies with more comprehensive methods of exposure assessment to capture the diversity of shift patterns are needed. As well, few previous studies have considered the role of hormone receptor subtype. METHODS: Relationships between night shift work and breast cancer were examined among 1134 breast cancer cases and 1179 controls, frequency-matched by age in Vancouver, British Columbia, and Kingston, Ontario. Self-reported lifetime occupational histories were assessed for night shift work, and hormone receptor status obtained from tumour pathology records. RESULTS: With approximately one-third of cases and controls ever employed in night shift work, associations with duration demonstrated no relationship between either 0-14 or 15-29 years, while an association was apparent for >/=30 years (OR=2.21, 95% CI 1.14 to 4.31). This association with long-term night shift work is robust to alternative definitions of prolonged shift work, with similar results for both health and non-health care workers. CONCLUSIONS: Long-term night shift work in a diverse mix of occupations is associated with increased breast cancer risk and not limited to nurses, as in most previous studies.  
  Address Department of Public Health Sciences and Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1351-0711 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23817841 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 757  
Permanent link to this record
 

 
Author Menegaux, F.; Truong, T.; Anger, A.; Cordina-Duverger, E.; Lamkarkach, F.; Arveux, P.; Kerbrat, P.; Fevotte, J.; Guenel, P. url  doi
openurl 
  Title Night work and breast cancer: a population-based case-control study in France (the CECILE study) Type Journal Article
  Year 2013 Publication International Journal of Cancer. Journal International du Cancer Abbreviated Journal Int J Cancer  
  Volume 132 Issue 4 Pages 924-931  
  Keywords (up) Human Health; Adult; Aged; Breast Neoplasms/epidemiology/*etiology; Case-Control Studies; *Circadian Rhythm; Employment; Female; France/epidemiology; Humans; Middle Aged; Occupations; Pregnancy; Risk Factors; *Work Schedule Tolerance  
  Abstract Night work involving disruption of circadian rhythm was suggested as a possible cause of breast cancer. We examined the role of night work in a large population-based case-control study carried out in France between 2005 and 2008. Lifetime occupational history including work schedules of each night work period was elicited in 1,232 cases of breast cancer and 1,317 population controls. Thirteen percent of the cases and 11% of the controls had ever worked on night shifts (OR = 1.27 [95% confidence interval = 0.99-1.64]). Odds ratios were 1.35 [1.01-1.80] in women who worked on overnight shifts, 1.40 [1.01-1.92] in women who had worked at night for 4.5 or more years, and 1.43 [1.01-2.03] in those who worked less than three nights per week on average. The odds ratio was 1.95 [1.13-3.35] in women employed in night work for >4 years before their first full-term pregnancy, a period where mammary gland cells are incompletely differentiated and possibly more susceptible to circadian disruption effects. Our results support the hypothesis that night work plays a role in breast cancer, particularly in women who started working at night before first full-term pregnancy.  
  Address Inserm, CESP Center for research in Epidemiology and Population Health, U1018, Environmental Epidemiology of Cancer, Villejuif, France; Univ Paris-Sud, UMRS 1018, Villejuif, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7136 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22689255 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 781  
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages 1554-1558  
  Keywords (up) Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
 

 
Author Bauer, S.E.; Wagner, S.E.; Burch, J.; Bayakly, R.; Vena, J.E. url  doi
openurl 
  Title A case-referent study: light at night and breast cancer risk in Georgia Type Journal Article
  Year 2013 Publication International Journal of Health Geographics Abbreviated Journal Int J Health Geogr  
  Volume 12 Issue Pages 23  
  Keywords (up) Human Health; Aged; Aged, 80 and over; Breast Neoplasms/*diagnosis/*epidemiology; Case-Control Studies; Circadian Rhythm/*physiology; Female; Georgia/epidemiology; Humans; Lighting/*adverse effects; Lung Neoplasms/diagnosis/epidemiology; Middle Aged; Registries; Risk Factors  
  Abstract BACKGROUND: Literature has identified detrimental health effects from the indiscriminate use of artificial nighttime light. We examined the co-distribution of light at night (LAN) and breast cancer (BC) incidence in Georgia, with the goal to contribute to the accumulating evidence that exposure to LAN increases risk of BC. METHODS: Using Georgia Comprehensive Cancer Registry data (2000-2007), we conducted a case-referent study among 34,053 BC cases and 14,458 lung cancer referents. Individuals with lung cancer were used as referents to control for other cancer risk factors that may be associated with elevated LAN, such as air pollution, and since this cancer type was not previously associated with LAN or circadian rhythm disruption. DMSP-OLS Nighttime Light Time Series satellite images (1992-2007) were used to estimate LAN levels; low (0-20 watts per sterradian cm(2)), medium (21-41 watts per sterradian cm(2)), high (>41 watts per sterradian cm(2)). LAN levels were extracted for each year of exposure prior to case/referent diagnosis in ArcGIS. RESULTS: Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression models controlling for individual-level year of diagnosis, race, age at diagnosis, tumor grade, stage; and population-level determinants including metropolitan statistical area (MSA) status, births per 1,000 women aged 15-50, percentage of female smokers, MSA population mobility, and percentage of population over 16 in the labor force. We found that overall BC incidence was associated with high LAN exposure (OR = 1.12, 95% CI [1.04, 1.20]). When stratified by race, LAN exposure was associated with increased BC risk among whites (OR = 1.13, 95% CI [1.05, 1.22]), but not among blacks (OR = 1.02, 95% CI [0.82, 1.28]). CONCLUSIONS: Our results suggest positive associations between LAN and BC incidence, especially among whites. The consistency of our findings with previous studies suggests that there could be fundamental biological links between exposure to artificial LAN and increased BC incidence, although additional research using exposure metrics at the individual level is required to confirm or refute these findings.  
  Address Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA. secbauer@ufl.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-072X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23594790; PMCID:PMC3651306 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 718  
Permanent link to this record
 

 
Author Eisenstein, M. url  doi
openurl 
  Title Chronobiology: stepping out of time Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S10-2  
  Keywords (up) Human Health; Animals; Benzofurans/therapeutic use; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/genetics/*physiology; Cyclopropanes/therapeutic use; Efficiency/physiology; Humans; Melatonin/agonists/metabolism; Obesity/metabolism; Sleep/genetics/*physiology; Suprachiasmatic Nucleus/metabolism  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698500 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 500  
Permanent link to this record
 

 
Author Owens, B. url  doi
openurl 
  Title Obesity: heavy sleepers Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S8-9  
  Keywords (up) Human Health; Animals; Body Mass Index; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/physiology; Energy Metabolism/*physiology; Ghrelin/metabolism; Humans; Insulin Resistance/physiology; Leptin/metabolism; Male; Mice; Obesity/*physiopathology; Satiety Response/physiology; Sleep/*physiology; Suprachiasmatic Nucleus/physiology; Time Factors; Weight Gain/physiology; Weight Loss/physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698508 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 503  
Permanent link to this record
 

 
Author Chamorro, E.; Bonnin-Arias, C.; Perez-Carrasco, M.J.; Munoz de Luna, J.; Vazquez, D.; Sanchez-Ramos, C. url  doi
openurl 
  Title Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro Type Journal Article
  Year 2013 Publication Photochemistry and Photobiology Abbreviated Journal Photochem Photobiol  
  Volume 89 Issue 2 Pages 468-473  
  Keywords (up) Human Health; Apoptosis/*radiation effects; Biological Markers/metabolism; Caspases/metabolism; Cell Survival/radiation effects; DNA Damage; Epithelial Cells/cytology/metabolism/*radiation effects; Histones/metabolism; Humans; Light; Membrane Potential, Mitochondrial/*radiation effects; Mitochondria/*radiation effects; Photoperiod; Primary Cell Culture; Reactive Oxygen Species/metabolism; Retinal Pigment Epithelium/cytology/metabolism/*radiation effects  
  Abstract Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.  
  Address Neuro-Computing and Neuro-Robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain. eva.chamorro@opt.ucm.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8655 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22989198 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 511  
Permanent link to this record
 

 
Author Kantermann, T. url  doi
openurl 
  Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages R689-90  
  Keywords (up) Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight  
  Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.  
  Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23968925 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 501  
Permanent link to this record
 

 
Author Czeisler, C.A. url  doi
openurl 
  Title Perspective: casting light on sleep deficiency Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S13  
  Keywords (up) Human Health; Circadian Rhythm/physiology/radiation effects; Electricity/adverse effects; Humans; Jet Lag Syndrome/etiology/physiopathology/therapy; Lighting/*adverse effects; Melatonin/metabolism/secretion; Phototherapy; Sleep Deprivation/epidemiology/*etiology/*physiopathology/therapy; Suprachiasmatic Nucleus/physiology/radiation effects  
  Abstract  
  Address Division of Sleep Medicine, Harvard Medical School, and Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, in Boston, Massachusetts, USA. charles_czeisler@hms.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698501 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 499  
Permanent link to this record
 

 
Author Brainard, G.C.; Coyle, W.; Ayers, M.; Kemp, J.; Warfield, B.; Maida, J.; Bowen, C.; Bernecker, C.; Lockley, S.W.; Hanifin, J.P. url  doi
openurl 
  Title Solid-state lighting for the International Space Station: Tests of visual performance and melatonin regulation Type Journal Article
  Year 2013 Publication Acta Astronautica Abbreviated Journal Acta Astronautica  
  Volume 92 Issue 1 Pages 21-28  
  Keywords (up) Human Health; Lighting  
  Abstract The International Space Station (ISS) uses General Luminaire Assemblies (GLAs) that house fluorescent lamps for illuminating the astronauts' working and living environments. Solid-state light emitting diodes (LEDs) are attractive candidates for replacing the GLAs on the ISS. The advantages of LEDs over conventional fluorescent light sources include lower up-mass, power consumption and heat generation, as well as fewer toxic materials, greater resistance to damage and long lamp life. A prototype Solid-State Lighting Assembly (SSLA) was developed and successfully installed on the ISS. The broad aim of the ongoing work is to test light emitted by prototype SSLAs for supporting astronaut vision and assessing neuroendocrine, circadian, neurobehavioral and sleep effects. Three completed ground-based studies are presented here including experiments on visual performance, color discrimination, and acute plasma melatonin suppression in cohorts of healthy, human subjects under different SSLA light exposure conditions within a high-fidelity replica of the ISS Crew Quarters (CQ). All visual tests were done under indirect daylight at 201 lx, fluorescent room light at 531 lx and 4870 K SSLA light in the CQ at 1266 lx. Visual performance was assessed with numerical verification tests (NVT). NVT data show that there are no significant differences in score (F=0.73, p=0.48) or time (F=0.14, p=0.87) for subjects performing five contrast tests (10%–100%). Color discrimination was assessed with Farnsworth-Munsell 100 Hue tests (FM-100). The FM-100 data showed no significant differences (F=0.01, p=0.99) in color discrimination for indirect daylight, fluorescent room light and 4870 K SSLA light in the CQ. Plasma melatonin suppression data show that there are significant differences (F=29.61, p<0.0001) across the percent change scores of plasma melatonin for five corneal irradiances, ranging from 0 to 405 &#956;W/cm2 of 4870 K SSLA light in the CQ (0–1270 lx). Risk factors for the health and safety of astronauts include disturbed circadian rhythms and altered sleep–wake patterns. These studies will help determine if SSLA lighting can be used both to support astronaut vision and serve as an in-flight countermeasure for circadian desynchrony, sleep disruption and cognitive performance deficits on the ISS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-5765 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1533  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: