toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. url  doi
openurl 
  Title Intercalibration of DMSP-OLS night-time light data by the invariant region method Type Journal Article
  Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 34 Issue 20 Pages 7356-7368  
  Keywords (up) DMSP-OLS; remote sensing; light at night  
  Abstract DMSP-OLS (Defense Meteorological Satellite Program Operational Linescan System) night-time light data can accurately reflect the scope and intensity of human activities. However, the raw data cannot be used directly for temporal analyses due to the lack of inflight calibration. There are three problems that should be addressed in intercalibration. First, because of differences between sensors, the data are not identical even when obtained in the same year. Second, different acquisition times may lead to random or systematic fluctuations in the data obtained by satellites in different orbits. Third, a pixel saturation phenomenon also exists in the urban centres of the image. Therefore, an invariant region method was used in this article, and the relative radiometric calibration and saturation correction achieved the desired results. In the meantime, intercalibration models for each satellite year of DMSP-OLS night-time light data were produced. Finally, intercalibration accuracy was evaluated, and the intercalibration results were tested with the corresponding gross domestic product (GDP) data.  
  Address School of Urban Planning and Design , Peking University , Shenzhen , 518055 , China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 203  
Permanent link to this record
 

 
Author Meyer, L.A.; Sullivan, S.M.P. url  doi
openurl 
  Title Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes Type Journal Article
  Year 2013 Publication Ecological Applications Abbreviated Journal Ecological Applications  
  Volume 23 Issue 6 Pages 1322-1330  
  Keywords (up) ecological light pollution; ecosystem function; stream–riparian invertebrate fluxes; tetragnathid spiders; urban streams  
  Abstract Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1–0.5 lux; moderate, 0.6–2.0 lux; high, 2.1–4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10–12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic–terrestrial fluxes of invertebrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-0761 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 102  
Permanent link to this record
 

 
Author Posch, T.; Hölker, F.; Freyhoff, A.; Uhlmann, T. openurl 
  Title (Hrsg.): Das Ende der Nacht. Lichtsmog: Gefahren – Perspektiven – Lösungen. 2. Auflage, Wiley-VCH Verlag 2013 Type Journal Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 231  
  Keywords (up) Ecology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 679  
Permanent link to this record
 

 
Author Held, M.; Hölker, F.; Jessel, B. openurl 
  Title Schutz der Nacht – Lichtverschmutzung, Biodiversität und Nachtlandschaft. Type Book Whole
  Year 2013 Publication BfN-Skripten Abbreviated Journal  
  Volume 336 Issue Pages  
  Keywords (up) Ecology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 681  
Permanent link to this record
 

 
Author Clark, G.F.; Stark, J.S.; Johnston, E.L.; Runcie, J.W.; Goldsworthy, P.M.; Raymond, B.; Riddle, M.J. url  doi
openurl 
  Title Light-driven tipping points in polar ecosystems Type Journal Article
  Year 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 19 Issue 12 Pages 3749-3761  
  Keywords (up) Ecology; benthic; biodiversity; irradiance; macroalgae; marine ecology; polar; regime shift  
  Abstract Some ecosystems can undergo abrupt transformation in response to relatively small environmental change. Identifying imminent 'tipping points' is crucial for biodiversity conservation, particularly in the face of climate change. Here, we describe a tipping point mechanism likely to induce widespread regime shifts in polar ecosystems. Seasonal snow and ice-cover periodically block sunlight reaching polar ecosystems, but the effect of this on annual light depends critically on the timing of cover within the annual solar cycle. At high latitudes, sunlight is strongly seasonal, and ice-free days around the summer solstice receive orders of magnitude more light than those in winter. Early melt that brings the date of ice-loss closer to midsummer will cause an exponential increase in the amount of sunlight reaching some ecosystems per year. This is likely to drive ecological tipping points in which primary producers (plants and algae) flourish and out-compete dark-adapted communities. We demonstrate this principle on Antarctic shallow seabed ecosystems, which our data suggest are sensitive to small changes in the timing of sea-ice loss. Algae respond to light thresholds that are easily exceeded by a slight reduction in sea-ice duration. Earlier sea-ice loss is likely to cause extensive regime shifts in which endemic shallow-water invertebrate communities are replaced by algae, reducing coastal biodiversity and fundamentally changing ecosystem functioning. Modeling shows that recent changes in ice and snow cover have already transformed annual light budgets in large areas of the Arctic and Antarctic, and both aquatic and terrestrial ecosystems are likely to experience further significant change in light. The interaction between ice-loss and solar irradiance renders polar ecosystems acutely vulnerable to abrupt ecosystem change, as light-driven tipping points are readily breached by relatively slight shifts in the timing of snow and ice-loss.  
  Address School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, 2052, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23893603 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: