|   | 
Details
   web
Records
Author Upham, N.S.; Hafner, J.C.
Title Do nocturnal rodents in the Great Basin Desert avoid moonlight? Type Journal Article
Year 2013 Publication Journal of Mammalogy Abbreviated Journal Journal of Mammalogy
Volume 94 Issue 1 Pages 59-72
Keywords Animals; Moonlight
Abstract Rodents make foraging decisions by balancing demands to acquire energy and mates with the need to avoid predators. To identify variations in the risk of predation, nocturnal rodents may use moonlight as a cue of risk. Moonlight avoidance behaviors have been observed in many nocturnal rodent species and are widely generalized to small mammals. However, most prior studies have been limited to 1 species or 1 study site, or occurred in modified habitats. We evaluated desert rodent activity patterns in natural habitats from 1999 to 2006 at 62 study sites across the Great Basin Desert of western North America. Rodent activity was examined by livetrapping in open habitats, using the presence of the sand-obligate kangaroo mouse (Microdipodops) as a habitat indicator. Activity patterns were assessed on 69 nights with clear skies and compared to corresponding moonlight values (moon phase and brightness) to evaluate the frequency of moonlight avoidance. Analyses of total activity of all species in the rodent assemblage relative to moonlight showed a distinct nonrandom (triangular-shaped) pattern but no significant correlations. However, individual genera of desert rodents responded differently to moonlight. Only kangaroo rats (Dipodomys) displayed significant moonlight avoidance patterns; they were maximally active at significantly different moonlight levels and avoided bright moonlight to a greater extent than co-occurring rodents. Moonlight seemed to limit the activity of kangaroo rats most strongly on bright nights during waxing moon phases and summer seasons, but not significantly during the spring or fall seasons, or during waning moons. Rather than avoiding moonlight, the activity of deer mice (Peromyscus), pocket mice (Perognathus), and kangaroo mice may be governed by changes in competition with kangaroo rats. Differences in the body size, locomotion, and space use of kangaroo rats relative to other rodents may explain why different moonlight responses were detected, especially if these traits alter how rodents perceive risk from bright moonlight. These findings indicate that moonlight avoidance may be a specialized trait of kangaroo rats rather than a general behavior of nocturnal desert rodents in the Great Basin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1555
Permanent link to this record
 

 
Author Davies, Thomas W; Bennie, Jonathan; Inger, Richard; Hempel de Ibarra, Natalie; Gaston, Kevin J
Title Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Type Journal Article
Year 2013 Publication Global Change Biologyology Abbreviated Journal
Volume 19 Issue 5 Pages 1417-1423
Keywords animals; ecosystems; species interaction; human vision
Abstract Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1584
Permanent link to this record
 

 
Author Fonken, Laura K; Weil, Zachary M; Nelson, Randy J
Title Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide Type Journal Article
Year 2013 Publication Brain, Behavior, and Immunity Abbreviated Journal
Volume 34 Issue Pages 159-163
Keywords animals; rodents; metabolism; health
Abstract The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24 h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1588
Permanent link to this record
 

 
Author Riley, W. D.; Davison, P. I.; Maxwell, D. L.; Bendall, B.
Title Street lighting delays and disrupts the dispersal of Atlantic salmon (Salmo salar) fry Type Journal Article
Year 2013 Publication Biological conservation Abbreviated Journal
Volume 158 Issue Pages 140-146
Keywords animals; fish; animal behaviour
Abstract There has been a decline in the abundance of Atlantic salmon (Salmo salar) despite significant conservation measures designed to reduce fishing mortality. Populations at the southern edge of their historical distribution, where anthropogenic impacts on the freshwater environment may be greater, have suffered the largest decline. In this investigation, we compared the timing of Atlantic salmon fry dispersal from incubators in an aquarium under control and ecologically relevant broad spectrum street-lit conditions (median night light intensity = 12 lx). Fry dispersal occurred 2.8 days later (F = 82.9, df = 1,8, p < 0.001), and on average the fry were smaller at dispersal (0.017 g, se = 0.0012, p < 0.001, n = 730), in the incubators exposed to street lighting. Significant disruption to the diel pattern of fry dispersal was also observed. Dispersal under control conditions was significantly directed around a mean time of 4:17 h after dusk (p < 0.001, r = 0.76, n = 1990) with very few fry (<2%) dispersing during daylight hours. Under street lighting, the dispersal of fry was significantly delayed (mean time 6:38 h after dusk; p < 0.001, r = 0.39, n = 2413) with a significant proportion (32%) dispersing during daylight hours. Survival to dispersal in the controlled aquarium conditions was not lower under street-lit conditions (p = 0.21, n = 5000 eggs across 10 incubators). However, in the wild, the period between fry emergence and the establishment of feeding territories is considered to be of critical importance in the dynamics of salmonid populations and any disruption may reduce fitness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1599
Permanent link to this record
 

 
Author Shimmura, Tsuyoshi; Yoshimura, Takashi
Title Circadian clock determines the timing of rooster crowing Type Journal Article
Year 2013 Publication Current Biology Abbreviated Journal
Volume 23 Issue 6 Pages R231–R233
Keywords animals; rooster; bird
Abstract Crowing of roosters is described by onomatopoetic terms such as ‘cock-a-doodle-doo’ (English), ‘ki-ke-ri-ki’ (German), and ‘ko-ke-kok-koh’ (Japanese). Rooster crowing is a symbol of the break of dawn in many countries. Indeed, crowing is frequently observed in the morning [1] . However, people also notice that crowing is sometimes observed at other times of day. Therefore, it is yet unclear whether crowing is under the control of an internal biological clock, or is simply caused by external stimuli. Here we show that predawn crowing is under the control of a circadian clock. Although external stimuli such as light and crowing by other individuals also induce roosters’ crowing, the magnitude of this induction is also regulated by a circadian clock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1600
Permanent link to this record