|   | 
Details
   web
Records
Author E. Olvera-Gonzalez; D. Alaniz-Lumbreras; V. Torres-Argüelles; E. González-Ramírez; J. Villa-Hernández; M. Araiza-Esquivel; R. Ivanov-Tsonchev; C. Olvera-Olvera; V.M. Castaño
Title A LED-based smart illumination system for studying plant growth Type Journal Article
Year 2013 Publication (down) Lighting Research and Technology Abbreviated Journal
Volume Issue Pages 1-12
Keywords Lighting
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 644
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hölker, F.
Title Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
Year 2013 Publication (down) Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 28 Issue 9 Pages 1637-1640
Keywords skyglow; light pollution; biodiversity
Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 35
Permanent link to this record
 

 
Author Figueiro, M.G.; Wood, B.; Plitnick, B.; Rea, M.S.
Title The impact of watching television on evening melatonin levels: Impact of watching television on evening melatonin Type Journal Article
Year 2013 Publication (down) Journal of the Society for Information Display Abbreviated Journal Jnl Soc Info Display
Volume 21 Issue 10 Pages 417-421
Keywords Human Health; television; correlated color temperature; sleep; melatonin levels; blue light; circadian disruption
Abstract Self-luminous electronic devices emit optical radiation at short wavelengths, close to the peak sensitivity of melatonin suppression. The present paper investigated if light from a 178-cm (70 in.) television suppressed melatonin. Results showed that light from televisions does not impact melatonin levels in the evening.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1071-0922 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 498
Permanent link to this record
 

 
Author Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Gotz, T.; Krebs, J.; Cajochen, C.
Title Acute exposure to evening blue-enriched light impacts on human sleep Type Journal Article
Year 2013 Publication (down) Journal of Sleep Research Abbreviated Journal J Sleep Res
Volume 22 Issue 5 Pages 573-580
Keywords Human Health
Abstract Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liege, Liege, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-1105 ISBN Medium
Area Expedition Conference
Notes PMID:23509952 Approved no
Call Number GFZ @ kyba @ Serial 2201
Permanent link to this record
 

 
Author Upham, N.S.; Hafner, J.C.
Title Do nocturnal rodents in the Great Basin Desert avoid moonlight? Type Journal Article
Year 2013 Publication (down) Journal of Mammalogy Abbreviated Journal Journal of Mammalogy
Volume 94 Issue 1 Pages 59-72
Keywords Animals; Moonlight
Abstract Rodents make foraging decisions by balancing demands to acquire energy and mates with the need to avoid predators. To identify variations in the risk of predation, nocturnal rodents may use moonlight as a cue of risk. Moonlight avoidance behaviors have been observed in many nocturnal rodent species and are widely generalized to small mammals. However, most prior studies have been limited to 1 species or 1 study site, or occurred in modified habitats. We evaluated desert rodent activity patterns in natural habitats from 1999 to 2006 at 62 study sites across the Great Basin Desert of western North America. Rodent activity was examined by livetrapping in open habitats, using the presence of the sand-obligate kangaroo mouse (Microdipodops) as a habitat indicator. Activity patterns were assessed on 69 nights with clear skies and compared to corresponding moonlight values (moon phase and brightness) to evaluate the frequency of moonlight avoidance. Analyses of total activity of all species in the rodent assemblage relative to moonlight showed a distinct nonrandom (triangular-shaped) pattern but no significant correlations. However, individual genera of desert rodents responded differently to moonlight. Only kangaroo rats (Dipodomys) displayed significant moonlight avoidance patterns; they were maximally active at significantly different moonlight levels and avoided bright moonlight to a greater extent than co-occurring rodents. Moonlight seemed to limit the activity of kangaroo rats most strongly on bright nights during waxing moon phases and summer seasons, but not significantly during the spring or fall seasons, or during waning moons. Rather than avoiding moonlight, the activity of deer mice (Peromyscus), pocket mice (Perognathus), and kangaroo mice may be governed by changes in competition with kangaroo rats. Differences in the body size, locomotion, and space use of kangaroo rats relative to other rodents may explain why different moonlight responses were detected, especially if these traits alter how rodents perceive risk from bright moonlight. These findings indicate that moonlight avoidance may be a specialized trait of kangaroo rats rather than a general behavior of nocturnal desert rodents in the Great Basin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1555
Permanent link to this record