toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, X.; Ge, L.; Chen, X. url  doi
openurl 
  Title Detecting Zimbabwe's Decadal Economic Decline Using Nighttime Light Imagery Type Journal Article
  Year 2013 Publication (down) Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue 9 Pages 4551-4570  
  Keywords Zimbabwe; economic decline; nighttime light; DMSP-OLS; remote sensing; light at night  
  Abstract Zimbabwe’s economy declined between 2000 and 2009. This study detects the economic decline in different regions of Zimbabwe using nighttime light imagery from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS). We found a good correlation (coefficient = 0.7361) between Zimbabwe’s total nighttime light (TNL) and Gross Domestic Product (GDP) for the period 1992 to 2009. Therefore, TNL was used as an indicator of regional economic conditions in Zimbabwe. Nighttime light imagery from 2000 and 2008 was compared at both national and regional scales for four types of regions. At the national scale, we found that nighttime light in more than half of the lit area decreased between 2000 and 2008. Moreover, within the four region types (inland mining towns, inland agricultural towns, border towns and cities) we determined that the mining and agricultural sectors experienced the most severe economic decline. Some of these findings were validated by economic survey data, proving that the nighttime light data is a potential data source for detecting the economic decline in Zimbabwe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 212  
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S. url  doi
openurl 
  Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
  Year 2013 Publication (down) Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue 12 Pages 6717-6766  
  Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight  
  Abstract Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 468  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  openurl
  Title Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Type Journal Article
  Year 2013 Publication (down) Publications of the Astronomical Society of the Pacific Abbreviated Journal  
  Volume 125 Issue 933 Pages 1370-1382  
  Keywords Skyglow  
  Abstract Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth’s surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 539  
Permanent link to this record
 

 
Author Kronfeld-Schor, N.; Dominoni, D.; de la Iglesia, H.; Levy, O.; Herzog, E.D.; Dayan, T.; Helfrich-Forster, C. url  doi
openurl 
  Title Chronobiology by moonlight Type Journal Article
  Year 2013 Publication (down) Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1765 Pages 20123088  
  Keywords Animals; Behavior, Animal/physiology; Circadian Rhythm/physiology; Feeding Behavior/*physiology; Invertebrates/*physiology; *Light; *Moon; Predatory Behavior/physiology; Reproduction/physiology; Vertebrates/physiology; communication; foraging; light pollution; lunar cycle; predation; reproduction  
  Abstract Most studies in chronobiology focus on solar cycles (daily and annual). Moonlight and the lunar cycle received considerably less attention by chronobiologists. An exception are rhythms in intertidal species. Terrestrial ecologists long ago acknowledged the effects of moonlight on predation success, and consequently on predation risk, foraging behaviour and habitat use, while marine biologists have focused more on the behaviour and mainly on reproduction synchronization with relation to the Moon phase. Lately, several studies in different animal taxa addressed the role of moonlight in determining activity and studied the underlying mechanisms. In this paper, we review the ecological and behavioural evidence showing the effect of moonlight on activity, discuss the adaptive value of these changes, and describe possible mechanisms underlying this effect. We will also refer to other sources of night-time light ('light pollution') and highlight open questions that demand further studies.  
  Address Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel. nogaks@tauex.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23825199; PMCID:PMC3712431 Approved no  
  Call Number IDA @ john @ Serial 29  
Permanent link to this record
 

 
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J. url  doi
openurl 
  Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
  Year 2013 Publication (down) Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1763 Pages 20130593  
  Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization  
  Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23740778; PMCID:PMC3774226 Approved no  
  Call Number IDA @ john @ Serial 42  
Permanent link to this record
 

 
Author Dominoni, D.; Quetting, M.; Partecke, J. url  doi
openurl 
  Title Artificial light at night advances avian reproductive physiology Type Journal Article
  Year 2013 Publication (down) Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1756 Pages 20123017  
  Keywords Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees  
  Abstract Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23407836; PMCID:PMC3574380 Approved no  
  Call Number IDA @ john @ Serial 50  
Permanent link to this record
 

 
Author Stokkan, K.-A.; Folkow, L.; Dukes, J.; Neveu, M.; Hogg, C.; Siefken, S.; Dakin, S.C.; Jeffery, G. url  doi
openurl 
  Title Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer Type Journal Article
  Year 2013 Publication (down) Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1773 Pages 20132451  
  Keywords Animals; Skyglow  
  Abstract Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.  
  Address Department of Arctic and Marine Biology, University of Tromso, , Tromso, Norway, Institute of Ophthalmology, University College London, , 11-43 Bath Street, London EC1V 9EL, UK, Moorfields Eye Hospital, , London, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24174115; PMCID:PMC3826237 Approved no  
  Call Number LoNNe @ kyba @ Serial 1636  
Permanent link to this record
 

 
Author Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M. url  doi
openurl 
  Title Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results Type Journal Article
  Year 2013 Publication (down) Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 35 Issue Pages 70  
  Keywords remote sensing; light pollution; VIIRS; satellite; radiometry  
  Abstract Dramatically improved nighttime lights capabilities are presented by the launch of the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) sensor. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA’s NGDC Earth Observation Group has started adapting their algorithms to process these new data. The concept of compositing nighttime data comprises combining only high quality data components over a period of time to improve sensitivity and coverage. For this work, flag image are compiled to describe image quality. The flag categories include: daytime, twilight, stray light, lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data is defined as not having any of these attributes present. Two methods of reprojection are necessary due to data collection characteristics. Custom algorithms have been created to terrain-correct and reproject all data to a common 15 arc second grid. Results of compositing over two time periods in 2012 are presented to demonstrate data quality and initial capabilities. These data can be downloaded at http://www.ngdc.noaa.gov/eog/viirs/downloadviirsntl.html.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 197  
Permanent link to this record
 

 
Author Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. url  doi
openurl 
  Title Why VIIRS data are superior to DMSP for mapping nighttime lights Type Journal Article
  Year 2013 Publication (down) Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 35 Issue Pages 62  
  Keywords  
  Abstract For more than forty years the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has been the only satellite system collecting global low-light imaging data. A series of twenty-four DMSP satellites have collected low-light imaging data. The design of the OLS has not changed significantly since satellite F-4 flew in the late 1970’s and OLS data have relatively coarse spatial resolution, limited dynamic range, and lack in-flight calibration. In 2011 NASA and NOAA launched the Suomi National Polar Partnership (SNPP) satellite carrying the first Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. The VIIRS collects low light imaging data and has several improvements over the OLS’ capabilities. In this paper we contrast the nighttime low light imaging collection capabilities of these two systems and compare their data products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 198  
Permanent link to this record
 

 
Author Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. url  doi
openurl 
  Title Development of a 2009 Stable Lights Product using DMSP-OLS data Type Journal Article
  Year 2013 Publication (down) Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 30 Issue Pages 114  
  Keywords DMSP-OLS; remote sensing  
  Abstract Since 1994, NGDC has had an active program focused on global mapping of nighttime lights using the data collected by the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) sensors. The basic product is a global annual cloud-free composite, which averages the OLS visible band data for one satellite from the cloud-free segments of individual orbits. Over the years, NGDC has developed automatic algorithms for screening the quality of the nighttime visible band observations to remove areas contaminated by sunlight, moonlight, and the presence of clouds. In the Stable Lights product generation, fires and other ephemeral lights are removed based on their high brightness and short duration. Background noise is removed by setting thresholds based on visible band values found in areas known to be free of detectable lights. In 2010, NGDC released the version 4 time series of Stable Lights, spanning the years 1992-2009. These are available online at <http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 207  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: