|   | 
Details
   web
Records
Author Zhou, H.; Hawkins, H.G.; Miles, J.D.
Title Guidelines for Freeway Lighting Curfews Type Journal Article
Year 2013 Publication Technical Report No. FHWA/TX-13/0-6645-1, Texas A&M Transportation Institute Abbreviated Journal
Volume Issue Pages á-72
Keywords Lighting Systems; Regulation
Abstract
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 445
Permanent link to this record
 

 
Author Gaston, K.J.
Title Sustainability: A green light for efficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7451 Pages 560-561
Keywords Editorial; Animals; Atmosphere/chemistry; Carbon Dioxide/analysis; Circadian Rhythm/physiology; Conservation of Energy Resources/economics/*methods/*trends; Global Warming/prevention & control; Humans; Lighting/*economics/instrumentation/statistics & numerical data/*trends; Public Health
Abstract
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23719447 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 459
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Fischer, J.; Hölker, F.
Title Two camera system for measurement of urban uplight angular distribution Type Journal Article
Year 2013 Publication AIP Conf. Proc Abbreviated Journal
Volume 1531 Issue 568 Pages
Keywords Instrumentiation
Abstract The angular distribution function of light emitted from cities is unknown, and represents the most important systematic error in skyglow simulations. We describe a method for measuring this distribution using a two camera system mounted on an aerial platform. We present preliminary results from a test flight using such a system, taken over the city of Berlin on July 14, 2011.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 467
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S.
Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 5 Issue 12 Pages 6717-6766
Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight
Abstract Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 468
Permanent link to this record
 

 
Author Min, B.; Gaba, K.M.; Sarr, O.F.; Agalassou, A.
Title Detection of rural electrification in Africa using DMSP-OLS night lights imagery Type Journal Article
Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 34 Issue 22 Pages 8118-8141
Keywords Remote Sensing
Abstract We report on the first systematic ground-based validation of the US Air Force Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) night lights imagery to detect rural electrification in the developing world. Drawing upon a unique survey of villages in Senegal and Mali, this study compares night-time light output from the DMSP-OLS against ground-based survey data on electricity use in 232 electrified villages and additional administrative data on 899 unelectrified villages. The analysis reveals that electrified villages are consistently brighter than unelectrified villages across annual composites, monthly composites, and a time series of nightly imagery. Electrified villages appear brighter because of the presence of streetlights, and brighter villages tend to have more streetlights. By contrast, the correlation of light output with household electricity use and access is low. We further demonstrate that a detection algorithm using data on night-time light output and the geographic location of settlements can accurately classify electrified villages. This research highlights the potential to use night lights imagery for the planning and monitoring of ongoing efforts to connect the 1.4 billion people who lack electricity around the world.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 484
Permanent link to this record