toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.F.; Sadler, J.P. url  doi
openurl 
  Title (up) Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 5 Pages e61460  
  Keywords *Cities; England; Environmental Pollution; Geographic Mapping; Humans; Light; *Lighting; Photography; Urban Population; *Urbanization  
  Abstract Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.  
  Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom. j.hale@bham.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23671566; PMCID:PMC3646000 Approved no  
  Call Number IDA @ john @ Serial 209  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  openurl
  Title (up) Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Type Journal Article
  Year 2013 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal  
  Volume 125 Issue 933 Pages 1370-1382  
  Keywords Skyglow  
  Abstract Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth’s surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 539  
Permanent link to this record
 

 
Author Fonken, Laura K; Weil, Zachary M; Nelson, Randy J url  doi
openurl 
  Title (up) Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide Type Journal Article
  Year 2013 Publication Brain, Behavior, and Immunity Abbreviated Journal  
  Volume 34 Issue Pages 159-163  
  Keywords animals; rodents; metabolism; health  
  Abstract The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24 h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1588  
Permanent link to this record
 

 
Author Pandey, B.; Joshi, P. K.; Seto, K. C. openurl 
  Title (up) Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data Type Journal Article
  Year 2013 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal  
  Volume 23 Issue Pages 49–61  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 963  
Permanent link to this record
 

 
Author Lyytimäki, J. url  doi
openurl 
  Title (up) Nature's nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management Type Journal Article
  Year 2013 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 3 Issue Pages e44-e48  
  Keywords Economics; Ecosystem disservices; Ecosystem services; Environmental management; Light pollution; Scotoecology; Shifting baselines  
  Abstract Research focusing on ecosystem services has tackled several of the major drivers of environmental degradation, but it suffers from a blind spot related to light pollution. Light pollution caused by artificial night-time lighting is a global environmental change affecting terrestrial, coastal and marine ecosystems. The long-term effects of the disruption of the natural cycles of light and dark on ecosystem functioning and ecosystem services are largely unknown. Even though additional research is clearly needed, identifying, developing and implementing stringent management actions aimed at reducing inadequately installed, unnecessary or excessive lighting are well justified. This essay argues that management is hampered, because ecosystem services from nocturnal nature are increasingly underappreciated by the public due to shifting baseline syndrome, making most people accustomed to constantly illuminated and light-polluted night environments. Increased attention from scientists, managers and the public is needed in order to explicate the best options for preserving the benefits from natural darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 433  
Permanent link to this record
 

 
Author Narendra, A.; Reid, S.F.; Raderschall, C.A. url  doi
openurl 
  Title (up) Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 3 Pages e58801  
  Keywords Adaptation, Biological/*physiology; Animals; Ants/*physiology; Australian Capital Territory; *Cues; Geographic Information Systems; Homing Behavior/*physiology; *Light; Locomotion/*physiology; Orientation/*physiology; insects  
  Abstract Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.  
  Address ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. ajay.narendra@anu.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23484052; PMCID:PMC3590162 Approved no  
  Call Number IDA @ john @ Serial 117  
Permanent link to this record
 

 
Author Small, C.; Elvidge, C.D. url  doi
openurl 
  Title (up) Night on Earth: Mapping decadal changes of anthropogenic night light in Asia Type Journal Article
  Year 2013 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 22 Issue Pages 40-52  
  Keywords Urban; Night light; DMSP-OLS; Landsat; Zipf; Asia; India; China; Nightsat; remote sensing; light at night; satellite  
  Abstract The defense meteorological satellite program (DMSP) operational linescan system (OLS) sensors have imaged emitted light from Earth's surface since the 1970s. Temporal overlap in the missions of 5 OLS sensors allows for intercalibration of the annual composites over the past 19 years (Elvidge et al., 2009). The resulting image time series captures a spatiotemporal signature of the growth and evolution of lighted human settlements and development. We use empirical orthogonal function (EOF) analysis and the temporal feature space to characterize and quantify patterns of temporal change in stable night light brightness and spatial extent since 1992. Temporal EOF analysis provides a statistical basis for representing spatially abundant temporal patterns in the image time series as uncorrelated vectors of brightness as a function of time from 1992 to 2009. The variance partition of the eigenvalue spectrum combined with temporal structure of the EOFs and spatial structure of the PCs provides a basis for distinguishing between deterministic multi-year trends and stochastic year-to-year variance. The low order EOFs and principal components (PC) space together discriminate both earlier (1990s) and later (2000s) increases and decreases in brightness. Inverse transformation of these low order dimensions reduces stochastic variance sufficiently so that tri-temporal composites depict potentially deterministic decadal trends. The most pronounced changes occur in Asia. At critical brightness threshold we find an 18% increase in the number of spatially distinct lights and an 80% increase in lighted area in southern and eastern Asia between 1992 and 2009. During this time both China and India experienced a &#8764;20% increase in number of lights and a &#8764;270% increase in lighted area – although the timing of the increase is later in China than in India. Throughout Asia a variety of different patterns of brightness increase are apparent in tri-temporal brightness composites – as well as some conspicuous areas of apparently decreasing background luminance and, in many places, intermittent light suggesting development of infrastructure rather than persistently lighted development. Vicarious validation using higher resolution Landsat imagery verifies multiple phases of urban growth in several cities as well as the consistent presence of low DN (<&#8764;15) background luminance for many agricultural areas. Lights also allow us to quantify changes in the size distribution and connectedness of different intensities of development. Over a wide range of brightnesses, the size distributions of spatially contiguous lighted area are consistent with power laws with exponents near &#8722;1 as predicted by Zipf's Law for cities. However, the larger lighted segments are much larger than individual cities; they correspond to vast spatial networks of contiguous development (Small et al., 2011).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 222  
Permanent link to this record
 

 
Author Menegaux, F.; Truong, T.; Anger, A.; Cordina-Duverger, E.; Lamkarkach, F.; Arveux, P.; Kerbrat, P.; Fevotte, J.; Guenel, P. url  doi
openurl 
  Title (up) Night work and breast cancer: a population-based case-control study in France (the CECILE study) Type Journal Article
  Year 2013 Publication International Journal of Cancer. Journal International du Cancer Abbreviated Journal Int J Cancer  
  Volume 132 Issue 4 Pages 924-931  
  Keywords Human Health; Adult; Aged; Breast Neoplasms/epidemiology/*etiology; Case-Control Studies; *Circadian Rhythm; Employment; Female; France/epidemiology; Humans; Middle Aged; Occupations; Pregnancy; Risk Factors; *Work Schedule Tolerance  
  Abstract Night work involving disruption of circadian rhythm was suggested as a possible cause of breast cancer. We examined the role of night work in a large population-based case-control study carried out in France between 2005 and 2008. Lifetime occupational history including work schedules of each night work period was elicited in 1,232 cases of breast cancer and 1,317 population controls. Thirteen percent of the cases and 11% of the controls had ever worked on night shifts (OR = 1.27 [95% confidence interval = 0.99-1.64]). Odds ratios were 1.35 [1.01-1.80] in women who worked on overnight shifts, 1.40 [1.01-1.92] in women who had worked at night for 4.5 or more years, and 1.43 [1.01-2.03] in those who worked less than three nights per week on average. The odds ratio was 1.95 [1.13-3.35] in women employed in night work for >4 years before their first full-term pregnancy, a period where mammary gland cells are incompletely differentiated and possibly more susceptible to circadian disruption effects. Our results support the hypothesis that night work plays a role in breast cancer, particularly in women who started working at night before first full-term pregnancy.  
  Address Inserm, CESP Center for research in Epidemiology and Population Health, U1018, Environmental Epidemiology of Cancer, Villejuif, France; Univ Paris-Sud, UMRS 1018, Villejuif, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7136 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22689255 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 781  
Permanent link to this record
 

 
Author Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M. url  doi
openurl 
  Title (up) Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results Type Journal Article
  Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume 35 Issue Pages 70  
  Keywords remote sensing; light pollution; VIIRS; satellite; radiometry  
  Abstract Dramatically improved nighttime lights capabilities are presented by the launch of the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) sensor. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA’s NGDC Earth Observation Group has started adapting their algorithms to process these new data. The concept of compositing nighttime data comprises combining only high quality data components over a period of time to improve sensitivity and coverage. For this work, flag image are compiled to describe image quality. The flag categories include: daytime, twilight, stray light, lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data is defined as not having any of these attributes present. Two methods of reprojection are necessary due to data collection characteristics. Custom algorithms have been created to terrain-correct and reproject all data to a common 15 arc second grid. Results of compositing over two time periods in 2012 are presented to demonstrate data quality and initial capabilities. These data can be downloaded at http://www.ngdc.noaa.gov/eog/viirs/downloadviirsntl.html.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 197  
Permanent link to this record
 

 
Author Zamorano, J.; de Miguel, A.; Alfaro, E.; Martínez-Delgado, D.; Ocaña, F.; Nievas, M.; mez Castaño, J. openurl 
  Title (up) NIXNOX project: Enjoy the dark skies of Spain Type Journal Article
  Year 2013 Publication In Highlights of Spanish Astrophysics VII Abbreviated Journal  
  Volume 1 Issue Pages 962–970  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 982  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: