toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title (up) Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
  Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology  
  Volume 154 Issue 10 Pages 3817-3825  
  Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain  
  Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861373 Approved no  
  Call Number IDA @ john @ Serial 93  
Permanent link to this record
 

 
Author Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title (up) Dim light at night increases depressive-like responses in male C3H/HeNHsd mice Type Journal Article
  Year 2013 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res  
  Volume 243 Issue Pages 74-78  
  Keywords Affect/physiology; Anhedonia/physiology; Animals; Behavior, Animal/*physiology; Circadian Rhythm/*physiology; Depression/*etiology/physiopathology; Hippocampus/*metabolism/pathology; Light/*adverse effects; Male; Mice; Mice, Inbred C3H; Neuropsychological Tests; Photoperiod  
  Abstract Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFalpha and IL1beta gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.  
  Address Department of Neuroscience, Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23291153 Approved no  
  Call Number IDA @ john @ Serial 95  
Permanent link to this record
 

 
Author Chang, A.-M.; Scheer, F.A.J.L.; Czeisler, C.A.; Aeschbach, D. url  doi
openurl 
  Title (up) Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history Type Journal Article
  Year 2013 Publication Sleep Abbreviated Journal Sleep  
  Volume 36 Issue 8 Pages 1239-1246  
  Keywords Arousal/*radiation effects; Attention/radiation effects; Cross-Over Studies; *Electroencephalography; Female; Humans; *Light; Male; Melatonin/blood/physiology; Psychomotor Performance/radiation effects; Reaction Time; Wakefulness/*radiation effects; Young Adult; Light history; alertness and performance; light exposure  
  Abstract STUDY OBJECTIVES: Light can induce an acute alerting response in humans; however, it is unknown whether the magnitude of this response is simply a function of the absolute illuminance of the light itself, or whether it depends on illuminance history preceding the stimulus. Here, we compared the effects of illuminance history on the alerting response to a subsequent light stimulus. DESIGN: A randomized, crossover design was used to compare the effect of two illuminance histories (1 lux vs. 90 lux) on the alerting response to a 6.5-h 90-lux light stimulus during the biological night. SETTING: Intensive Physiologic Monitoring Unit, Brigham and Women's Hospital, Boston, MA. PARTICIPANTS: Fourteen healthy young adults (6 F; 23.5 +/- 2.9 years). INTERVENTIONS: Participants were administered two 6.5-h light exposures (LE) of 90 lux during the biological night. For 3 days prior to each LE, participants were exposed to either 1 lux or 90 lux during the wake episode. MEASUREMENTS AND RESULTS: The alerting response to light was assessed using subjective sleepiness ratings, lapses of attention, and reaction times as measured with an auditory psychomotor vigilance task, as well as power density in the delta/theta range of the waking EEG. The alerting response to light was greater and lasted longer when the LE followed exposure to 1 lux compared to 90 lux light. CONCLUSION: The magnitude and duration of the alerting effect of light at night depends on the illuminance history and appears to be subject to sensitization and adaptation.  
  Address Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. amchang@rics.bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23904684; PMCID:PMC3700721 Approved no  
  Call Number IDA @ john @ Serial 145  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hölker, F. url  doi
openurl 
  Title (up) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
  Year 2013 Publication Landscape Ecology Abbreviated Journal Landscape Ecol  
  Volume 28 Issue 9 Pages 1637-1640  
  Keywords skyglow; light pollution; biodiversity  
  Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 35  
Permanent link to this record
 

 
Author Upham, N.S.; Hafner, J.C. url  doi
openurl 
  Title (up) Do nocturnal rodents in the Great Basin Desert avoid moonlight? Type Journal Article
  Year 2013 Publication Journal of Mammalogy Abbreviated Journal Journal of Mammalogy  
  Volume 94 Issue 1 Pages 59-72  
  Keywords Animals; Moonlight  
  Abstract Rodents make foraging decisions by balancing demands to acquire energy and mates with the need to avoid predators. To identify variations in the risk of predation, nocturnal rodents may use moonlight as a cue of risk. Moonlight avoidance behaviors have been observed in many nocturnal rodent species and are widely generalized to small mammals. However, most prior studies have been limited to 1 species or 1 study site, or occurred in modified habitats. We evaluated desert rodent activity patterns in natural habitats from 1999 to 2006 at 62 study sites across the Great Basin Desert of western North America. Rodent activity was examined by livetrapping in open habitats, using the presence of the sand-obligate kangaroo mouse (Microdipodops) as a habitat indicator. Activity patterns were assessed on 69 nights with clear skies and compared to corresponding moonlight values (moon phase and brightness) to evaluate the frequency of moonlight avoidance. Analyses of total activity of all species in the rodent assemblage relative to moonlight showed a distinct nonrandom (triangular-shaped) pattern but no significant correlations. However, individual genera of desert rodents responded differently to moonlight. Only kangaroo rats (Dipodomys) displayed significant moonlight avoidance patterns; they were maximally active at significantly different moonlight levels and avoided bright moonlight to a greater extent than co-occurring rodents. Moonlight seemed to limit the activity of kangaroo rats most strongly on bright nights during waxing moon phases and summer seasons, but not significantly during the spring or fall seasons, or during waning moons. Rather than avoiding moonlight, the activity of deer mice (Peromyscus), pocket mice (Perognathus), and kangaroo mice may be governed by changes in competition with kangaroo rats. Differences in the body size, locomotion, and space use of kangaroo rats relative to other rodents may explain why different moonlight responses were detected, especially if these traits alter how rodents perceive risk from bright moonlight. These findings indicate that moonlight avoidance may be a specialized trait of kangaroo rats rather than a general behavior of nocturnal desert rodents in the Great Basin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2372 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1555  
Permanent link to this record
 

 
Author Prugh, L.R.; Golden, C.D. url  doi
openurl 
  Title (up) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 83 Issue 2 Pages 504-514  
  Keywords foraging efficiency; giving-up density; illumination; indirect effects; lunar cycles; moonlight; nocturnality; phylogenetic meta-analysis; predation risk; risk-sensitive foraging  
  Abstract The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.  
  Address Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1, Fairbanks, AK, 99775, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24102189 Approved no  
  Call Number IDA @ john @ Serial 83  
Permanent link to this record
 

 
Author Kayaba, M.; Iwayama, K.; Ogata, H.; Seya, Y.; Tokuyama, K.; Satoh, M. url  doi
openurl 
  Title (up) Drowsiness and low energy metabolism in the following morning induced by nocturnal blue light exposure Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 14 Issue Pages e166-e167  
  Keywords blue light; light exposure; light at night; circadian disruption; drowsiness; melatonin; metabolism; sleep  
  Abstract Introduction

Evening light exposure debilitates the circadian rhythm and elicits sleep disturbance. Blue light peak wavelengths, around 460 nm, suppress melatonin secretion via the non-image-forming system. The effects of nocturnal blue light exposure on sleep have been reported to be specific but rather small (Münch, 2008). This study was designed to assess the effect of nocturnal blue light exposure on sleep and energy metabolism until noon the next day.

Materials and methods

Nine healthy male volunteers aged between 21 and 25 participated in this study which had a balanced cross-over design with intrasubject comparisons. After 2 h dark adaptation, the subjects were exposed to blue light or no light for 2 h. The peak wavelength of the blue LED was 465 nm, and the horizontal irradiance of the blue light at the height of eye was at 7.02fÊW/cm2. Sleep was recorded polysomnographically, and energy metabolism was measured with a whole body indirect calorimeter.

Results

There were no significant differences in sleep architecture and energy metabolism during the night. However, dozing (stages 1 and 2) was significantly higher (26.0 < 29.4 vs 6.3 < 8.1 min, P < 0.05), and energy expenditure, O2 consumption, CO2 production and the thermic effect of food (increase in energy expenditure after breakfast) were significantly lower the following morning in the blue light exposure subjects.

Conclusion

Contrary to our expectation, sleep architecture and energy metabolism during sleep were not affected by evening exposure to blue light. It might be due to our milder intervention by which subjects in a sitting position did not gaze at the light source set on the ceiling, while the subjects in previous studies directly received brighter light via custom built goggles (Cajochen, 2005; Münch, 2008) or gazed at a light source under the influence of mydriatic agents to dilate pupils (Brainard, 2001). New findings of the present study were that dozing (stages 1 and 2) was significantly increased, and energy metabolism was significantly lower the following morning in blue light exposed subjects. This suggests that modulation of the circadian rhythm is affected by nocturnal blue light exposure and the effect continues in the following daytime even if the intervention was mild.
 
  Address University of Tsukuba, Graduate School of Comprehensive Human Sciences, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 349  
Permanent link to this record
 

 
Author Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J. url  doi
openurl 
  Title (up) Dung beetles use the Milky Way for orientation Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 4 Pages 298-300  
  Keywords Animals; Beetles/*physiology; *Behavior, Animal; Cues; Feces; *Galaxies; Locomotion; Moon; Motor Activity; Orientation/*physiology; *Stars, Celestial; Vision, Ocular/physiology; Milky Way; insects  
  Abstract When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.  
  Address Department of Biology, Lund University, 223 62 Lund, Sweden. marie.dacke@biol.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23352694 Approved no  
  Call Number IDA @ john @ Serial 116  
Permanent link to this record
 

 
Author van der Burght, B.W.; Hansen, M.; Olsen, J.; Zhou, J.; Wu, Y.; Nissen, M.H.; Sparrow, J.R. url  doi
openurl 
  Title (up) Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells Type Journal Article
  Year 2013 Publication Acta Ophthalmologica Abbreviated Journal Acta Ophthalmol  
  Volume 91 Issue 7 Pages e537-45  
  Keywords Apoptosis; Cell Line; Cell Survival; Gene Expression Regulation/*physiology; Humans; Light; Lipofuscin/genetics; Oligonucleotide Array Sequence Analysis; Principal Component Analysis; Pyridinium Compounds; RNA, Messenger/genetics; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium/metabolism/pathology/*radiation effects; Retinoids/*genetics; Transcriptome; A2e; age-related macular degeneration; apoptosis; complement cascade; gene expression; retinal pigment epithelial cells; blue light; retinal pigment epithelial; epigenetics  
  Abstract PURPOSE: Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS: A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS: Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION: This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.  
  Address Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-375X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23742627 Approved no  
  Call Number IDA @ john @ Serial 346  
Permanent link to this record
 

 
Author Kim, J.; Hwang, K.; Cho, J.; Koo, D.; Joo, E.; Hong, S. url  doi
openurl 
  Title (up) Effect of bedside light on sleep quality and background eeg rhythms Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 14 Issue Pages e170  
  Keywords Human Health  
  Abstract Artificial lighting has benefited society by extending the length of a productive day, but it can be ”light pollution” when it becomes excessive. Unnecessary exposure to artificial light at night can cause myopia, obesity, metabolic disorders and even some type of cancers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 502  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: