|   | 
Details
   web
Records
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J.
Title (up) Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 154 Issue 10 Pages 3817-3825
Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain
Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:23861373 Approved no
Call Number IDA @ john @ Serial 93
Permanent link to this record
 

 
Author Fonken, L.K.; Nelson, R.J.
Title (up) Dim light at night increases depressive-like responses in male C3H/HeNHsd mice Type Journal Article
Year 2013 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 243 Issue Pages 74-78
Keywords Affect/physiology; Anhedonia/physiology; Animals; Behavior, Animal/*physiology; Circadian Rhythm/*physiology; Depression/*etiology/physiopathology; Hippocampus/*metabolism/pathology; Light/*adverse effects; Male; Mice; Mice, Inbred C3H; Neuropsychological Tests; Photoperiod
Abstract Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFalpha and IL1beta gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.
Address Department of Neuroscience, Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:23291153 Approved no
Call Number IDA @ john @ Serial 95
Permanent link to this record
 

 
Author Chang, A.-M.; Scheer, F.A.J.L.; Czeisler, C.A.; Aeschbach, D.
Title (up) Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history Type Journal Article
Year 2013 Publication Sleep Abbreviated Journal Sleep
Volume 36 Issue 8 Pages 1239-1246
Keywords Arousal/*radiation effects; Attention/radiation effects; Cross-Over Studies; *Electroencephalography; Female; Humans; *Light; Male; Melatonin/blood/physiology; Psychomotor Performance/radiation effects; Reaction Time; Wakefulness/*radiation effects; Young Adult; Light history; alertness and performance; light exposure
Abstract STUDY OBJECTIVES: Light can induce an acute alerting response in humans; however, it is unknown whether the magnitude of this response is simply a function of the absolute illuminance of the light itself, or whether it depends on illuminance history preceding the stimulus. Here, we compared the effects of illuminance history on the alerting response to a subsequent light stimulus. DESIGN: A randomized, crossover design was used to compare the effect of two illuminance histories (1 lux vs. 90 lux) on the alerting response to a 6.5-h 90-lux light stimulus during the biological night. SETTING: Intensive Physiologic Monitoring Unit, Brigham and Women's Hospital, Boston, MA. PARTICIPANTS: Fourteen healthy young adults (6 F; 23.5 +/- 2.9 years). INTERVENTIONS: Participants were administered two 6.5-h light exposures (LE) of 90 lux during the biological night. For 3 days prior to each LE, participants were exposed to either 1 lux or 90 lux during the wake episode. MEASUREMENTS AND RESULTS: The alerting response to light was assessed using subjective sleepiness ratings, lapses of attention, and reaction times as measured with an auditory psychomotor vigilance task, as well as power density in the delta/theta range of the waking EEG. The alerting response to light was greater and lasted longer when the LE followed exposure to 1 lux compared to 90 lux light. CONCLUSION: The magnitude and duration of the alerting effect of light at night depends on the illuminance history and appears to be subject to sensitization and adaptation.
Address Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. amchang@rics.bwh.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:23904684; PMCID:PMC3700721 Approved no
Call Number IDA @ john @ Serial 145
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hölker, F.
Title (up) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
Year 2013 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 28 Issue 9 Pages 1637-1640
Keywords skyglow; light pollution; biodiversity
Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 35
Permanent link to this record
 

 
Author Upham, N.S.; Hafner, J.C.
Title (up) Do nocturnal rodents in the Great Basin Desert avoid moonlight? Type Journal Article
Year 2013 Publication Journal of Mammalogy Abbreviated Journal Journal of Mammalogy
Volume 94 Issue 1 Pages 59-72
Keywords Animals; Moonlight
Abstract Rodents make foraging decisions by balancing demands to acquire energy and mates with the need to avoid predators. To identify variations in the risk of predation, nocturnal rodents may use moonlight as a cue of risk. Moonlight avoidance behaviors have been observed in many nocturnal rodent species and are widely generalized to small mammals. However, most prior studies have been limited to 1 species or 1 study site, or occurred in modified habitats. We evaluated desert rodent activity patterns in natural habitats from 1999 to 2006 at 62 study sites across the Great Basin Desert of western North America. Rodent activity was examined by livetrapping in open habitats, using the presence of the sand-obligate kangaroo mouse (Microdipodops) as a habitat indicator. Activity patterns were assessed on 69 nights with clear skies and compared to corresponding moonlight values (moon phase and brightness) to evaluate the frequency of moonlight avoidance. Analyses of total activity of all species in the rodent assemblage relative to moonlight showed a distinct nonrandom (triangular-shaped) pattern but no significant correlations. However, individual genera of desert rodents responded differently to moonlight. Only kangaroo rats (Dipodomys) displayed significant moonlight avoidance patterns; they were maximally active at significantly different moonlight levels and avoided bright moonlight to a greater extent than co-occurring rodents. Moonlight seemed to limit the activity of kangaroo rats most strongly on bright nights during waxing moon phases and summer seasons, but not significantly during the spring or fall seasons, or during waning moons. Rather than avoiding moonlight, the activity of deer mice (Peromyscus), pocket mice (Perognathus), and kangaroo mice may be governed by changes in competition with kangaroo rats. Differences in the body size, locomotion, and space use of kangaroo rats relative to other rodents may explain why different moonlight responses were detected, especially if these traits alter how rodents perceive risk from bright moonlight. These findings indicate that moonlight avoidance may be a specialized trait of kangaroo rats rather than a general behavior of nocturnal desert rodents in the Great Basin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1555
Permanent link to this record