|   | 
Details
   web
Records
Author Meyer, L.A.; Sullivan, S.M.P.
Title Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes Type (up) Journal Article
Year 2013 Publication Ecological Applications Abbreviated Journal Ecological Applications
Volume 23 Issue 6 Pages 1322-1330
Keywords ecological light pollution; ecosystem function; stream–riparian invertebrate fluxes; tetragnathid spiders; urban streams
Abstract Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1–0.5 lux; moderate, 0.6–2.0 lux; high, 2.1–4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10–12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic–terrestrial fluxes of invertebrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 102
Permanent link to this record
 

 
Author Picchi, M.S.; Avolio, L.; Azzani, L.; Brombin, O.; Camerini, G.
Title Fireflies and land use in an urban landscape: the case of Luciola italica L. (Coleoptera: Lampyridae) in the city of Turin Type (up) Journal Article
Year 2013 Publication Journal of Insect Conservation Abbreviated Journal J Insect Conserv
Volume 17 Issue 4 Pages 797-805
Keywords Turin; insects; Coleoptera Lampyridae; Luciola italica; Urban environment; Fireflies; Light pollution; Ecological corridors; Green areas; Po River; Italy
Abstract Research was carried out in the city of Turin (Northern Italy) in order to assess the suitability of the urban environment for fireflies.The study started in 2007 with an artistic and scientific project promoted by Parco Arte Vivente (PAV—Park of living art). Citizens joining the project recorded 18 areas where they could observe fireflies, which were identified as Luciola italica L. (Coleoptera Lampyridae). All of the 18 areas recorded by citizens were then visited during the summer of 2009 and the abundance of L. italica was estimated using transects. In 12 sites the presence of the firefly was confirmed. The habitat structures of L. italica were woods interspersed with clearings in the urban districts in the hills, and parks along rivers in the lower and more populated part of the city. In sites where fireflies were observed, the level of illuminance measured was significantly lower than in areas where L. italica was absent. The analysis of the landscape around the study areas showed a negative correlation between the extent of urbanization and fireflies abundance. Survival of L. italica populations in the urban area of Turin is influenced by the extent of green areas and the level of artificial illumination. Parks lying among rivers preserve a level of darkness suitable for fireflies and are connected by woody strips growing along the banks of rivers, that probably function as ecological corridors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1366-638X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 108
Permanent link to this record
 

 
Author Shimoda, M.; Honda, K.-ichiro
Title Insect reactions to light and its applications to pest management Type (up) Journal Article
Year 2013 Publication Applied Entomology and Zoology Abbreviated Journal Appl Entomol Zool
Volume 48 Issue 4 Pages 413-421
Keywords ultraviolet; light; Integrated pest management; Artificial lighting; Photoreception; Phototaxis; Light-emitting diode; *Lighting
Abstract Insects are able to see ultraviolet (UV) radiation. Nocturnal insects are often attracted to light sources that emit large amounts of UV radiation, and devices that exploit this behavior, such as light traps for forecasting pest outbreaks, and electric insect killers, have been developed. Some diurnal species are attracted to yellow; yellow pan traps are used for conducting surveys for pest outbreaks and yellow sticky plates are used for pest control. Lamps that give off yellow illumination have been used effectively to control the activity of nocturnal moths and thus reduce damage to fruit, vegetables, and flowers. Covering cultivation facilities with film that filters out near-UV radiation reduces the invasion of pests such as whiteflies and thrips into the facilities, thus reducing damage. Reflective material placed on cultivated land can control the approach of flying insects such as aphids. Future development and use of new light sources such as light-emitting diodes is anticipated for promoting integrated pest management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6862 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 110
Permanent link to this record
 

 
Author Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J.
Title Dung beetles use the Milky Way for orientation Type (up) Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 4 Pages 298-300
Keywords Animals; Beetles/*physiology; *Behavior, Animal; Cues; Feces; *Galaxies; Locomotion; Moon; Motor Activity; Orientation/*physiology; *Stars, Celestial; Vision, Ocular/physiology; Milky Way; insects
Abstract When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.
Address Department of Biology, Lund University, 223 62 Lund, Sweden. marie.dacke@biol.lu.se
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23352694 Approved no
Call Number IDA @ john @ Serial 116
Permanent link to this record
 

 
Author Narendra, A.; Reid, S.F.; Raderschall, C.A.
Title Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels Type (up) Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 3 Pages e58801
Keywords Adaptation, Biological/*physiology; Animals; Ants/*physiology; Australian Capital Territory; *Cues; Geographic Information Systems; Homing Behavior/*physiology; *Light; Locomotion/*physiology; Orientation/*physiology; insects
Abstract Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Address ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. ajay.narendra@anu.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23484052; PMCID:PMC3590162 Approved no
Call Number IDA @ john @ Serial 117
Permanent link to this record