toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Temperature stability of the sky quality meter Type Journal Article
  Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 13 Issue 9 Pages 12166-12174  
  Keywords *Artifacts; Atmosphere/*analysis; Environmental Monitoring/*instrumentation; Equipment Design; Equipment Failure Analysis; Photometry/*instrumentation; Reproducibility of Results; Sensitivity and Specificity; Temperature; *Transducers; Sky Quality Meter; SQM  
  Abstract The stability of radiance measurements taken by the Sky Quality Meter (SQM)was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of -15 degrees C to 35 degrees C, and during temperature changes of -33 degrees C/h and +70 degrees C/h.This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%,indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Carl-Heinrich-Becker-Weg 6-10, Berlin 12165, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24030682; PMCID:PMC3821345 Approved no  
  Call Number IDA @ john @ Serial 194  
Permanent link to this record
 

 
Author Fritschi, L.; Erren, T.C.; Glass, D.C.; Girschik, J.; Thomson, A.K.; Saunders, C.; Boyle, T.; El-Zaemey, S.; Rogers, P.; Peters, S.; Slevin, T.; D'Orsogna, A.; de Vocht, F.; Vermeulen, R.; Heyworth, J.S. url  doi
openurl 
  Title The association between different night shiftwork factors and breast cancer: a case-control study Type Journal Article
  Year 2013 Publication British Journal of Cancer Abbreviated Journal Br J Cancer  
  Volume 109 Issue 9 Pages 2472-2480  
  Keywords Adult; Aged; Aged, 80 and over; Breast Neoplasms/*epidemiology/etiology; Case-Control Studies; Female; Humans; Life Style; Middle Aged; Questionnaires; Risk; Risk Factors; Western Australia/epidemiology; *Work Schedule Tolerance; Young Adult; oncogenesis  
  Abstract BACKGROUND: Research on the possible association between shiftwork and breast cancer is complicated because there are many different shiftwork factors, which might be involved including: light at night, phase shift, sleep disruption and changes in lifestyle factors while on shiftwork (diet, physical activity, alcohol intake and low sun exposure). METHODS: We conducted a population-based case-control study in Western Australia from 2009 to 2011 with 1205 incident breast cancer cases and 1789 frequency age-matched controls. A self-administered questionnaire was used to collect demographic, reproductive, and lifestyle factors and lifetime occupational history and a telephone interview was used to obtain further details about the shiftwork factors listed above. RESULTS: A small increase in risk was suggested for those ever doing the graveyard shift (work between midnight and 0500 hours) and breast cancer (odds ratio (OR)=1.16, 95% confidence interval (CI)=0.97-1.39). For phase shift, we found a 22% increase in breast cancer risk (OR=1.22, 95% CI=1.01-1.47) with a statistically significant dose-response relationship (P=0.04). For the other shiftwork factors, risks were marginally elevated and not statistically significant. CONCLUSION: We found some evidence that some of the factors involved in shiftwork may be associated with breast cancer but the ORs were low and there were inconsistencies in duration and dose-response relationships.  
  Address Western Australian Institute for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-0920 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24022188; PMCID:PMC3817316 Approved no  
  Call Number IDA @ john @ Serial 153  
Permanent link to this record
 

 
Author Schoech, S.J.; Bowman, R.; Hahn, T.P.; Goymann, W.; Schwabl, I.; Bridge, E.S. url  doi
openurl 
  Title The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica) Type Journal Article
  Year 2013 Publication Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology Abbreviated Journal J Exp Zool A Ecol Genet Physiol  
  Volume 319 Issue 9 Pages 527-538  
  Keywords Animals; Corticosterone/blood; Ecosystem; Female; *Light; Male; Melatonin/blood; Passeriformes/*physiology; *Photoperiod; Reproduction/*physiology; Testosterone/blood  
  Abstract Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were approximately 4x greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.  
  Address Department of Biological Sciences, University of Memphis, Memphis, Tennessee  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-5223 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23970442 Approved no  
  Call Number IDA @ john @ Serial 37  
Permanent link to this record
 

 
Author Kantermann, T. url  doi
openurl 
  Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages R689-90  
  Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight  
  Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.  
  Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23968925 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 501  
Permanent link to this record
 

 
Author Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. url  doi
openurl 
  Title Adverse health effects of nighttime lighting: comments on American Medical Association policy statement Type Journal Article
  Year 2013 Publication American Journal of Preventive Medicine Abbreviated Journal Am J Prev Med  
  Volume 45 Issue 3 Pages 343-346  
  Keywords American Medical Association; Cell Cycle/physiology; Circadian Rhythm/*physiology; DNA Damage/physiology; *Health Policy; Humans; Lighting/*adverse effects; United States  
  Abstract The American Medical Association House of Delegates in June of 2012 adopted a policy statement on nighttime lighting and human health. This major policy statement summarizes the scientific evidence that nighttime electric light can disrupt circadian rhythms in humans and documents the rapidly advancing understanding from basic science of how disruption of circadian rhythmicity affects aspects of physiology with direct links to human health, such as cell cycle regulation, DNA damage response, and metabolism. The human evidence is also accumulating, with the strongest epidemiologic support for a link of circadian disruption from light at night to breast cancer. There are practical implications of the basic and epidemiologic science in the form of advancing lighting technologies that better accommodate human circadian rhythmicity.  
  Address University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-3797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23953362 Approved no  
  Call Number IDA @ john @ Serial 130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: