toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Clark, G.F.; Stark, J.S.; Johnston, E.L.; Runcie, J.W.; Goldsworthy, P.M.; Raymond, B.; Riddle, M.J. url  doi
openurl 
  Title Light-driven tipping points in polar ecosystems Type Journal Article
  Year 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 19 Issue 12 Pages 3749-3761  
  Keywords Ecology; benthic; biodiversity; irradiance; macroalgae; marine ecology; polar; regime shift  
  Abstract Some ecosystems can undergo abrupt transformation in response to relatively small environmental change. Identifying imminent 'tipping points' is crucial for biodiversity conservation, particularly in the face of climate change. Here, we describe a tipping point mechanism likely to induce widespread regime shifts in polar ecosystems. Seasonal snow and ice-cover periodically block sunlight reaching polar ecosystems, but the effect of this on annual light depends critically on the timing of cover within the annual solar cycle. At high latitudes, sunlight is strongly seasonal, and ice-free days around the summer solstice receive orders of magnitude more light than those in winter. Early melt that brings the date of ice-loss closer to midsummer will cause an exponential increase in the amount of sunlight reaching some ecosystems per year. This is likely to drive ecological tipping points in which primary producers (plants and algae) flourish and out-compete dark-adapted communities. We demonstrate this principle on Antarctic shallow seabed ecosystems, which our data suggest are sensitive to small changes in the timing of sea-ice loss. Algae respond to light thresholds that are easily exceeded by a slight reduction in sea-ice duration. Earlier sea-ice loss is likely to cause extensive regime shifts in which endemic shallow-water invertebrate communities are replaced by algae, reducing coastal biodiversity and fundamentally changing ecosystem functioning. Modeling shows that recent changes in ice and snow cover have already transformed annual light budgets in large areas of the Arctic and Antarctic, and both aquatic and terrestrial ecosystems are likely to experience further significant change in light. The interaction between ice-loss and solar irradiance renders polar ecosystems acutely vulnerable to abrupt ecosystem change, as light-driven tipping points are readily breached by relatively slight shifts in the timing of snow and ice-loss.  
  Address School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, 2052, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23893603 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 850  
Permanent link to this record
 

 
Author Cajochen, C.; Altanay-Ekici, S.; Munch, M.; Frey, S.; Knoblauch, V.; Wirz-Justice, A. url  doi
openurl 
  Title Evidence that the lunar cycle influences human sleep Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 15 Pages 1485-1488  
  Keywords Adult; Aged; Cross-Sectional Studies; Electroencephalography; Female; Humans; Hydrocortisone/analysis/metabolism; Male; Melatonin/analysis/metabolism; Middle Aged; Moon; Nontherapeutic Human Experimentation; Periodicity; Saliva/metabolism; Sleep/*physiology; Sleep Stages/physiology; Young Adult  
  Abstract Endogenous rhythms of circalunar periodicity ( approximately 29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland. christian.cajochen@upkbs.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23891110 Approved no  
  Call Number IDA @ john @ Serial 140  
Permanent link to this record
 

 
Author Rockhill, A.P.; DePerno, C.S.; Powell, R.A. url  doi
openurl 
  Title The effect of illumination and time of day on movements of bobcats (Lynx rufus) Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e69213  
  Keywords Animals; Female; *Lighting; Lynx/*physiology; Male; Moon; Movement/*physiology; North Carolina; Time Factors; Wetlands  
  Abstract Understanding behavioral changes of prey and predators based on lunar illumination provides insight into important life history, behavioral ecology, and survival information. The objectives of this research were to determine if bobcat movement rates differed by period of day (dark, moon, crepuscular, day), lunar illumination (<10%, 10 – <50%, 50 – <90%, >90%), and moon phase (new, full). Bobcats had high movement rates during crepuscular and day periods and low movement rates during dark periods with highest nighttime rates at 10-<50% lunar illumination. Bobcats had highest movement rates during daytime when nighttime illumination was low (new moon) and higher movement rates during nighttime when lunar illumination was high (full moon). The behaviors we observed are consistent with prey availability being affected by light level and by limited vision by bobcats during darkness.  
  Address Fisheries, Wildlife, and Conservation Biology, North Carolina State University, Raleigh, North Carolina, USA. aimee_rockhill@ncsu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861963; PMCID:PMC3704646 Approved no  
  Call Number IDA @ john @ Serial 84  
Permanent link to this record
 

 
Author Aubé, M.; Roby, J.; Kocifaj, M. url  doi
openurl 
  Title Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e67798  
  Keywords Humans; *Light; Lighting/methods; Melatonin/*metabolism; Photosynthesis/*radiation effects; Plant Development/radiation effects; blue light; circadian disruption  
  Abstract Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.  
  Address Departement de physique, Cegep de Sherbrooke, Sherbrooke, Quebec, Canada. martin.aube@cegepsherbrooke.qc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861808; PMCID:PMC3702543 Approved no  
  Call Number IDA @ john @ Serial 282  
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
  Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology  
  Volume 154 Issue 10 Pages 3817-3825  
  Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain  
  Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861373 Approved no  
  Call Number IDA @ john @ Serial 93  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: