toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Min, B.; Gaba, K.M.; Sarr, O.F.; Agalassou, A. url  doi
openurl 
  Title Detection of rural electrification in Africa using DMSP-OLS night lights imagery Type Journal Article
  Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume (down) 34 Issue 22 Pages 8118-8141  
  Keywords Remote Sensing  
  Abstract We report on the first systematic ground-based validation of the US Air Force Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) night lights imagery to detect rural electrification in the developing world. Drawing upon a unique survey of villages in Senegal and Mali, this study compares night-time light output from the DMSP-OLS against ground-based survey data on electricity use in 232 electrified villages and additional administrative data on 899 unelectrified villages. The analysis reveals that electrified villages are consistently brighter than unelectrified villages across annual composites, monthly composites, and a time series of nightly imagery. Electrified villages appear brighter because of the presence of streetlights, and brighter villages tend to have more streetlights. By contrast, the correlation of light output with household electricity use and access is low. We further demonstrate that a detection algorithm using data on night-time light output and the geographic location of settlements can accurately classify electrified villages. This research highlights the potential to use night lights imagery for the planning and monitoring of ongoing efforts to connect the 1.4 billion people who lack electricity around the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 484  
Permanent link to this record
 

 
Author Fonken, Laura K; Weil, Zachary M; Nelson, Randy J url  doi
openurl 
  Title Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide Type Journal Article
  Year 2013 Publication Brain, Behavior, and Immunity Abbreviated Journal  
  Volume (down) 34 Issue Pages 159-163  
  Keywords animals; rodents; metabolism; health  
  Abstract The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24 h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1588  
Permanent link to this record
 

 
Author Bedrosian, T.A.; Vaughn, C.A.; Galan, A.; Daye, G.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Nocturnal light exposure impairs affective responses in a wavelength-dependent manner Type Journal Article
  Year 2013 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci  
  Volume (down) 33 Issue 32 Pages 13081-13087  
  Keywords Analysis of Variance; Animals; Circadian Rhythm/*physiology; Cricetinae; Dose-Response Relationship, Radiation; Female; Food Deprivation/physiology; Food Preferences/physiology/radiation effects; Fourier Analysis; Gene Expression Regulation/radiation effects; Hippocampus/pathology/radiation effects; Immobility Response, Tonic/radiation effects; Light/*adverse effects; Mood Disorders/*etiology/pathology; Motor Activity/physiology/radiation effects; Phodopus; Proto-Oncogene Proteins c-fos/metabolism; Social Behavior; Suprachiasmatic Nucleus/metabolism; Time Factors  
  Abstract Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.  
  Address Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA. Bedrosian.2@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0270-6474 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23926261 Approved no  
  Call Number IDA @ john @ Serial 27  
Permanent link to this record
 

 
Author Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. url  doi
openurl 
  Title Development of a 2009 Stable Lights Product using DMSP-OLS data Type Journal Article
  Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings  
  Volume (down) 30 Issue Pages 114  
  Keywords DMSP-OLS; remote sensing  
  Abstract Since 1994, NGDC has had an active program focused on global mapping of nighttime lights using the data collected by the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) sensors. The basic product is a global annual cloud-free composite, which averages the OLS visible band data for one satellite from the cloud-free segments of individual orbits. Over the years, NGDC has developed automatic algorithms for screening the quality of the nighttime visible band observations to remove areas contaminated by sunlight, moonlight, and the presence of clouds. In the Stable Lights product generation, fires and other ephemeral lights are removed based on their high brightness and short duration. Background noise is removed by setting thresholds based on visible band values found in areas known to be free of detectable lights. In 2010, NGDC released the version 4 time series of Stable Lights, spanning the years 1992-2009. These are available online at <http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-3026 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 207  
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
  Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume (down) 28 Issue 4 Pages 262-271  
  Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity  
  Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.  
  Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23929553; PMCID:PMC4033305 Approved no  
  Call Number IDA @ john @ Serial 28  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: