toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rowse, E.G.; Harris, S.; Jones, G. url  doi
openurl 
  Title Effects of dimming light-emitting diode street lights on light-opportunistic and light-averse bats in suburban habitats Type Journal Article
  Year 2018 Publication Royal Society Open Science Abbreviated Journal (down) R. Soc. open sci.  
  Volume 5 Issue 6 Pages 180205  
  Keywords Animals; Lighting  
  Abstract Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1931  
Permanent link to this record
 

 
Author McGlashan, E.M.; Nandam, L.S.; Vidafar, P.; Mansfield, D.R.; Rajaratnam, S.M.W.; Cain, S.W. url  doi
openurl 
  Title The SSRI citalopram increases the sensitivity of the human circadian system to light in an acute dose Type Journal Article
  Year 2018 Publication Psychopharmacology Abbreviated Journal (down) Psychopharmacology (Berl)  
  Volume in press Issue Pages in press  
  Keywords Human Health  
  Abstract RATIONALE: Disturbances of the circadian system are common in depression. Though they typically subside when depression is treated with antidepressants, the mechanism by which this occurs is unknown. Despite being the most commonly prescribed class of antidepressants, the effect of selective serotonin reuptake inhibitors (SSRIs) on the human circadian clock is not well understood. OBJECTIVE: To examine the effect of the SSRI citalopram (30 mg) on the sensitivity of the human circadian system to light. METHODS: This study used a double-blind, placebo-controlled, within-subjects, crossover design. Participants completed two melatonin suppression assessments in room level light (~ 100 lx), taking either a single dose of citalopram 30 mg or a placebo at the beginning of each light exposure. Melatonin suppression was calculated by comparing placebo and citalopram light exposure conditions to a dim light baseline. RESULTS: A 47% increase in melatonin suppression was observed after administration of an acute dose of citalopram, with all participants showing more suppression after citalopram administration (large effect, d = 1.54). Further, melatonin onset occurred later under normal room light with citalopram compared to placebo. CONCLUSIONS: Increased sensitivity of the circadian system to light could assist in explaining some of the inter-individual variability in antidepressant treatment responses, as it is likely to assist in recovery in some patients, while causing further disruption for others.  
  Address Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3800, Australia. sean.cain@monash.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-3158 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30219986 Approved no  
  Call Number GFZ @ kyba @ Serial 2012  
Permanent link to this record
 

 
Author Cho, CH; Yoon, HK; Kang, SG; Kim, L; Lee, E; Lee, HJ url  doi
openurl 
  Title Impact of Exposure to Dim Light at Night on Sleep in Female and Comparison with Male Subjects Type Journal Article
  Year 2018 Publication Psychiatry Investigation Abbreviated Journal (down) Psychiatry Investig  
  Volume 15 Issue 5 Pages 520-530  
  Keywords Human Health  
  Abstract Light pollution has become a social and health issue. We performed an experimental study to investigate impact of dim light at night (dLAN) on sleep in female subjects, with measurement of salivary melatonin.

Methods:

The 25 female subjects (Group A: 12; Group B: 13 subjects) underwent a nocturnal polysomnography (NPSG) session with no light (Night 1) followed by an NPSG session randomly assigned to two conditions (Group A: 5; Group B: 10 lux) during a whole night of sleep (Night 2). Salivary melatonin was measured before and after sleep on each night. For further investigation, the female and male subjects of our previous study were collected (48 subjects), and differences according to gender were compared.

Results:

dLAN during sleep was significantly associated with decreased total sleep time (TST; F=4.818, p=0.039), sleep efficiency (SE; F=5.072, p=0.034), and Stage R latency (F=4.664, p=0.041) for female subjects, and decreased TST (F=14.971, p<0.001) and SE (F=7.687, p=0.008), and increased wake time after sleep onset (F=6.322, p=0.015) and Stage R (F=5.031, p=0.03), with a night-group interaction (F=4.579, p=0.038) for total sample. However, no significant melatonin changes. There was no significant gender difference of the impact of dLAN on sleep, showing the negative changes in the amount and quality of sleep and the increase in REM sleep in the both gender group under 10 lux condition.

Conclusion:

We found a negative impact of exposure to dLAN on sleep in female as well as in merged subjects. REM sleep showed a pronounced increase under 10 lux than under 5 lux in merged subjects, suggesting the possibility of subtle influences of dLAN on REM sleep.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1845  
Permanent link to this record
 

 
Author Dananay, K.L.; Benard, M.F. url  doi
openurl 
  Title Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian Type Journal Article
  Year 2018 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal (down) Proc. R. Soc. B  
  Volume 285 Issue 1882 Pages 20180367  
  Keywords Animals  
  Abstract Artificial light at night (ALAN) affects over 20% of the earth's surface and is estimated to increase 6% per year. Most studies of ALAN have focused on a single mechanism or life stage. We tested for indirect and direct ALAN effects that occurred by altering American toads' (Anaxyrus americanus) ecological interactions or by altering toad development and growth, respectively. We conducted an experiment over two life stages using outdoor mesocosms and indoor terraria. In the first phase, the presence of ALAN reduced metamorphic duration and periphyton biomass. The effects of ALAN appeared to be mediated through direct effects on toad development, and we found no evidence for indirect effects of ALAN acting through altered ecological interactions or colonization. In the second phase, post-metamorphic toad growth was reduced by 15% in the ALAN treatment. Juvenile-stage ALAN also affected toad activity: in natural light, toads retreated into leaf litter at night whereas ALAN toads did not change behaviour. Carry-over effects of ALAN were also present; juvenile toads that had been exposed to larval ALAN exhibited marginally increased activity. In this time frame and system, our experiments suggested ALAN's effects act primarily through direct effects, rather than indirect effects, and can persist across life stages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1951  
Permanent link to this record
 

 
Author Nelson, R.J.; Chbeir, S. url  doi
openurl 
  Title Dark matters: effects of light at night on metabolism Type Journal Article
  Year 2018 Publication The Proceedings of the Nutrition Society Abbreviated Journal (down) Proc Nutr Soc  
  Volume 77 Issue 3 Pages 223-229  
  Keywords Human Health  
  Abstract Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.  
  Address Department of Neuroscience,The Ohio State University,Columbus, OH 43210,USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-6651 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29747703 Approved no  
  Call Number GFZ @ kyba @ Serial 1896  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: