toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dimitriadis, C.; Fournari - Konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Mazaris, A.D. url  doi
openurl 
  Title Reduction of sea turtle population recruitment caused by nightlight: Evidence from the Mediterranean region Type Journal Article
  Year 2018 Publication Ocean & Coastal Management Abbreviated Journal (down) Ocean & Coastal Management  
  Volume 153 Issue Pages 108-115  
  Keywords Animals  
  Abstract The spread of artificial night lighting is increasingly acknowledged as a major threat to global biodiversity. Identifying and exploring the impacts of nightlight pollution upon species behavior, ecology and population dynamics could enhance conservation capacity. Sea turtle hatchlings emerge from nest at night and use visual cues to direct towards the brightest and lowest horizon, eventually leading them to the sea. Nightlight pollution could alter the cues perceived, disorienting the fragile hatchlings. We examined the level of artificial lighting and orientation patterns of sea turtles hatchling, in Zakynthos Island, Greece, one of the main nesting rookeries of the loggerheads (Caretta caretta) in the Mediterranean Sea. We analyzed movement patterns of 5967 hatchlings from 230 nests, and demonstrate that nightlight pollution could reduce population recruitment by more than 7%, suggesting that mitigation measures should become a high conservation priority. Our results further suggest that the responses of sea turtle hatchlings to artificial nighttime lighting could vary significantly depending on various factors, either anthropogenic or natural. Local conditions operating at the nesting site level determine the fine scale responses of hatchlings, thus conservation measures should be drawn in respect to site-specific properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-5691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1792  
Permanent link to this record
 

 
Author Czaczkes, T.J.; Bastidas-Urrutia, A.M.; Ghislandi, P.; Tuni, C. url  doi
openurl 
  Title Reduced light avoidance in spiders from populations in light-polluted urban environments Type Journal Article
  Year 2018 Publication Die Naturwissenschaften Abbreviated Journal (down) Naturwissenschaften  
  Volume 105 Issue 11-12 Pages 64  
  Keywords Animals  
  Abstract Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.  
  Address Department of Biology, Ludwig-Maximilians University of Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30377809 Approved no  
  Call Number GFZ @ kyba @ Serial 2140  
Permanent link to this record
 

 
Author Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. url  doi
openurl 
  Title LEDs for photons, physiology and food Type Journal Article
  Year 2018 Publication Nature Abbreviated Journal (down) Nature  
  Volume 563 Issue 7732 Pages 493-500  
  Keywords Review; Lighting; Human Health; Plants  
  Abstract Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.  
  Address Utah State University, Logan, UT, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30464269 Approved no  
  Call Number GFZ @ kyba @ Serial 2110  
Permanent link to this record
 

 
Author Jan Stenvers, D.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. url  doi
openurl 
  Title Circadian clocks and insulin resistance Type Journal Article
  Year 2018 Publication Nature Reviews. Endocrinology Abbreviated Journal (down) Nat Rev Endocrinol  
  Volume in press Issue Pages  
  Keywords Review; Human Health  
  Abstract Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.  
  Address Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands. a.kalsbeek@nin.knaw.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-5029 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30531917 Approved no  
  Call Number GFZ @ kyba @ Serial 2133  
Permanent link to this record
 

 
Author Masri, S.; Sassone-Corsi, P. url  doi
openurl 
  Title The emerging link between cancer, metabolism, and circadian rhythms Type Journal Article
  Year 2018 Publication Nature Medicine Abbreviated Journal (down) Nat Med  
  Volume 24 Issue 12 Pages 1795-1803  
  Keywords Review; Human Health  
  Abstract The circadian clock is a complex cellular mechanism that, through the control of diverse metabolic and gene expression pathways, governs a large array of cyclic physiological processes. Epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer that is supported by recent preclinical data. In addition, results from animal models and molecular studies underscore emerging links between cancer metabolism and the circadian clock. This has implications for therapeutic approaches, and we discuss the possible design of chronopharmacological strategies.  
  Address Department of Biological Chemistry, Center for Epigenetics and Metabolism, INSERM U1233, University of California Irvine, Irvine, CA, USA. psc@uci.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-8956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30523327 Approved no  
  Call Number GFZ @ kyba @ Serial 2135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: