|   | 
Details
   web
Records
Author Kumar, P.; Sajjad, H.; Joshi, P.K.; Elvidge, C.D.; Rehman, S.; Chaudhary, B.S.; Tripathy, B.R.; Singh, J.; Pipal, G.
Title Modeling the luminous intensity of Beijing, China using DMSP-OLS night-time lights series data for estimating population density Type Journal Article
Year 2018 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal (up) Physics and Chemistry of the Earth, Parts A/B/C
Volume 109 Issue Pages 31-39
Keywords Remote Sensing
Abstract Various scientific researches were conducted to monitor human activities and natural phenomena with the availability of various night time satellite data such as Defense Meteorological Satellite Program (DMPS). Population growth especially in a faster growing economy like China is an important indicator for assessing socio-economic development, urban planning and environmental management. Thus, spatial distribution of population is instrumental in assessing growth and developmental activities in Beijing city of China. The satellite observation data derived from Defense Meteorological Satellite Program (DMSP) was utilized to estimate population density through the measurement of light flux with radiometric recording. The data was calibrated using C0, C1, C2 parameters before processing. Population density of Beijing city was estimated using light volume of this calibrated data. Regression analysis between urban population and light volume revealed high correlation (r2=0.89)r2=0.89). Thus, population density can effectively be estimated using light intensity. The model used for estimating urban population density can effectively be utilized for other major cities of the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1934
Permanent link to this record
 

 
Author Russart, K.L.G.; Nelson, R.J.
Title Light at night as an environmental endocrine disruptor Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal (up) Physiol Behav
Volume 190 Issue Pages 82-89
Keywords Human Health; Animals
Abstract Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past approximately 30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:28870443 Approved no
Call Number LoNNe @ kyba @ Serial 1719
Permanent link to this record
 

 
Author Cleary-Gaffney, M.; Coogan, A.N.
Title Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal (up) Physiol Behav
Volume 189 Issue Pages 78-85
Keywords Animals
Abstract Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters.
Address Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland. Electronic address: andrew.coogan@mu.ie
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:29540316 Approved no
Call Number GFZ @ kyba @ Serial 1826
Permanent link to this record
 

 
Author Hanifin, J.P.; Lockley, S.W.; Cecil, K.; West, K.; Jablonski, M.; Warfield, B.; James, M.; Ayers, M.; Byrne, B.; Gerner, E.; Pineda, C.; Rollag, M.; Brainard, G.C.
Title Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal (up) Physiol Behav
Volume in press Issue Pages
Keywords Human Health
Abstract Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000K). Twenty healthy participants were studied in a time-free environment for 7days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1x10(14) photons/cm(2)/s, 4000K or 17,000K, n=10/condition) for 6.5h during the biological night. Following an 8h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean+/-SD) 70.9+/-19.6% and 42.8+/-29.1%, respectively, p<0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p<0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation.
Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:30296404 Approved no
Call Number GFZ @ kyba @ Serial 2025
Permanent link to this record
 

 
Author Studer, P.; Brucker, J.M.; Haag, C.; Van Doren, J.; Moll, G.H.; Heinrich, H.; Kratz, O.
Title Effects of blue- and red-enriched light on attention and sleep in typically developing adolescents Type Journal Article
Year 2018 Publication Physiology & Behavior Abbreviated Journal (up) Physiol Behav
Volume 199 Issue Pages 11-19
Keywords Human Health
Abstract Differential effects of blue- and red-enriched light on attention and sleep have been primarily described in adults. In our cross-over study in typically developing adolescents (11-17years old), we found attention enhancing effects of blue- compared to red-enriched light in the morning (high intensity of ca. 1000lx, short duration: <1h) in two of three attention tasks: e.g. better performance in math tests and reduced reaction time variability in a computerized attention test. In our pilot study, actigraphy measures of sleep indicated slight benefits for red- compared to blue-enriched light in the evening: tendencies toward a lower number of phases with movement activity after sleep onset in the complete sample and shorter sleep onset latency in a subgroup with later evening exposure times. These findings point to the relevance of light concepts regarding attention and sleep in typically developing adolescents. Such concepts should be developed and tested further in attention demanding contexts (at school) and for therapeutic purposes in adolescents with impaired attention or impaired circadian rhythms.
Address Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), Erlangen, Germany. Electronic address: oliver.kratz@uk-erlangen.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:30381244 Approved no
Call Number GFZ @ kyba @ Serial 2142
Permanent link to this record